
 DRAFT

This Han
policy or
technolog
but, rath

Handbook for Object-Oriented
Technology in Aviation (OOTiA)

Volume 3: Best Practices
vPC.0

January 30, 2004

dbook does not constitute Federal Aviation Administration (FAA)
 guidance, nor is it intended to be an endorsement of object-oriented
y (OOT). This Handbook is not to be used as a standalone product

er, as input when considering issues in a project-specific context.
3-1

Contents
3.1 INTRODUCTION..1

3.1.1 Purpose..1
3.1.2 Organization ..1

3.2 MAPPING OF VOLUME 2 ISSUES TO VOLUME 3 GUIDELINES ...2
3.2.1 Key Concerns/Issues Addressed by the Guidelines..2

3.3 SINGLE INHERITANCE AND DYNAMIC DISPATCH...11
3.3.1 Purpose..11
3.3.2 Background..11
3.3.3 Overall Approach ..13
3.3.4 Inheritance with Overriding ..13
3.3.5 Method Extension ..16
3.3.6 Subtyping ...17
3.3.7 Formal Subtyping ..18
3.3.8 Unit Level Testing of Substitutability...19
3.3.9 System Level Testing of Substitutability Using Assertions...21
3.3.10 System Level Testing of Substitutability Using Specialized Test Cases ..23
3.3.11 Class Coupling..24
3.3.12 Deep Hierarchy...26

3.4 MULTIPLE INHERITANCE ...28
3.4.1 Purpose..28
3.4.2 Background..28
3.4.3 Overall approach...28
3.4.4 Multiple Interface Inheritance ...29
3.4.5 Multiple Implementation Inheritance...30
3.4.6 Mixed Multiple Inheritance ...31
3.4.7 Combination of Distinct Abstractions..32
3.4.8 Top Heavy Hierarchy...33

3.5 TEMPLATES ...35
3.5.1 Purpose..35
3.5.2 Background..35
3.5.3 Source Code Review ..35
3.5.4 Requirements-based Test Development, Review, and Coverage ...36
3.5.5 Structural Coverage for Templates..36

3.6 INLINING ...38
3.6.1 Purpose..38
3.6.2 Background..38
3.6.3 Inlining and Structural Coverage ..38
3.6.4 Source Code Reviewof Inlined Code..39

3.7 TYPE CONVERSION..40
3.7.1 Purpose..40
3.7.2 Background..40
3.7.3 Overall approach...40
3.7.4 Source Code Review, Checklist, and Coding Standards..40
3.7.5 Loss of Precision in Type Conversions ...41
3.7.6 Type Conversions of References and Pointers...41
3.7.7 Language specific guidelines...42

3.8 OVERLOADING AND METHOD RESOLUTION ..43
3.8.1 Purpose..43
3.8.2 Background..43
3.8.3 Code Review Method ...43
3.8.4 Implicit Conversion ...44

3.9 DEAD AND DEACTIVATED CODE, AND REUSE...45
3.9.1 Purpose..45

 NOTE: This handbook does not constitute official policy or guidance from any of the certification authorities. 3-ii

Volume 3 DRAFT

3.9.2 Background..45
3.9.3 Reuse of Software Components..45
3.9.4 Requirements Traceability ...47
3.9.5 Certification Credit for Reused but Modified Class Hierarchy ...48
3.9.6 Changes in the Status of Deactivated Code Versus Actively Used Code...48
3.9.7 Service History Credit and Deactivated Code ...49

3.10 OBJECT-ORIENTED TOOLS ..50
3.10.1 Purpose ...50
3.10.2 Background...50
3.10.3 Traceability When Using OO Tools ..50
3.10.4 Configuration Management When Using Visual Modeling Tools...50
3.10.5 Visual Modeling Tools Frameworks ...51
3.10.6 Automatic Code Generators..51
3.10.7 Structural Coverage Analysis Tools..53
3.10.8 Structural Coverage Analysis for Inheritance...53
3.10.9 Structural Coverage Analysis for Dynamic Dispatch ...53

3.11 TRACEABILITY ..55
3.11.1 Purpose ...55
3.11.2 Scope/Background ..55
3.11.3 Overall approach ..55
3.11.4 Tracing to Functional Requirements...56
3.11.5 Complex Class Hierarchies and Relationships ...57
3.11.6 OO Design Notation and Traceability Ambiguity...58
3.11.7 Traceability and Dynamic Binding/Overriding ..58
3.11.8 Dead and Deactivated Code ...58
3.11.9 Many to Many Mapping of Requirements to Methods ..59
3.11.10 Iterative Development ...59
3.11.11 Change Management for Reusable Components ..59

3.12 STRUCTURAL COVERAGE ..60
3.12.1 Purpose ...60
3.12.2 Background...60
3.12.3 Overall approach ..60
3.12.4 Structural Coverage of Inheritance ..60
3.12.5 Polymorphism with Dynamic Dispatch...63
3.12.6 Data Coupling and Control Coupling...65

3.13 REFERENCES ...66
3.14 INDEX OF TERMS ...68

APPENDIX A FREQUENTLY ASKED QUESTIONS (FAQS) ...70

APPENDIX B EXTENDED GUIDELINES AND EXAMPLES...72
B.1 SINGLE INHERITANCE..72

B.1.1 Extension of the Inheritance with Overriding Guidelines..72
B.1.2 Extension of the Method Extension Guidelines..76

B.2 MULTIPLE INHERITANCE ...78
B.2.1 Composition involving multiple inheritance ..78
B.2.2 Extended guidelines ...84

B.3 DEAD AND DEACTIVATED CODE, AND REUSE...86
B.3.1 Deactivated Code Examples ..86
B.3.2 Hierarchy Changes and Method Overriding ...87

3-iii

Volume 3 DRAFT

Figures
Figure 3.4-1 Combination of Distinct Abstractions ..32
Figure 3.10-1 Code Generation using Visual Modeling Tools..52
Figure 3.11-1 Overview of Traceability ..57
Figure 3.12-1 Inheritance..61
Figure 3.12-2 Concrete Coverage ...62
Figure 3.12-3 Context Coverage ...62
Figure 3.12-4 Flattened Inheritance ...63
Figure 3.12-5 Dynamic Dispatch ..64

Tables
Table 3.2-1 Mapping of Key Concerns and Guidelines...10
Table 3.12-1 Hierarchical Incremental Testing Summary ..61

3-iv

3.1 Introduction
This volume has been written to help developers and certification authorities identify current best practices for the
use of object-oriented technology (OOT) in aviation. As OOT in embedded and safety critical systems is still an
evolving discipline, additional information that was not available when this material was compiled may be available
in the future. In any case, the OOT standards and methods the developer intends to use should be documented in the
planning process documents and presented to the certification authorities as early as possible in the program to
reduce risk.

3.1.1 Purpose
The purpose of this volume is to identify best practices to safely implement OOT in aviation by providing some
known ways to address the issues documented in Volume 2. The guidelines presented in this volume are not
necessarily the only way to address these issues. There may also be other means that are effective, and the handbook
may itself define alternative ways to resolve a given issue. In some areas, this volume does not provide best
practices but, rather, cites areas of ongoing research that should be monitored by prospective OOT developers. Such
areas of research occur most notably in the areas control and data coupling, and structural coverage analysis as
applied to OOT in aviation. In all cases, it should be noted that it is still the developer’s responsibility to
demonstrate that the OOT methods and processes they have selected to utilize can, and will, provide the appropriate
integrity for safe software implementation.

3.1.2 Organization
This volume is organized in sections as follows:

 Introduction

 Mapping of Volume 2 Issues to Volume 3 Guidelines

Guidelines for:

 Single Inheritance and Dynamic Dispatch
 Multiple Inheritance
 Templates
 Inlining
 Type Conversion
 Overloading and Method Resolution
 Dead And Deactivated Code, And Reuse
 Object-Oriented Tools
 Traceability
 Structural Coverage

 References for Volume 3

 Index

 Appendix A Frequently Asked Questions

 Appendix B Extended Guidelines And Examples

 NOTE: This handbook does not constitute official policy or guidance from any of the certification authorities. 3-1

Volume 3 DRAFT

3.2 Mapping of Volume 2 Issues to Volume 3 Guidelines

3.2.1 Key Concerns/Issues Addressed by the Guidelines
The following table provides a mapping between the key concerns with associated issues in volume 2 and the
volume 3 guidelines that address them. Footnotes are provided when an explanation of the mapping (the manner in
which the guidelines address a particular concern or a specific issue) is required.

When volume 3 provides alternative ways to address a key concern, more than one row appears in the Guidelines
column opposite the key concern in the table. The key concern can then be addressed by following the guidelines
listed in any one of these rows. That is, only one guideline of those listed (separated by OR) needs to be followed to
address the concern The exception is where a section identifies an area of active research where no guidelines
currently exist.

Key concern IL #’s Guidelines

Volume 2, section 2.3.1.1

How does the life cycle data from an OO
development process map to the life
cycle data specified in DO-178B?

77, 87 Section 3.10.3

Section 3.11.4.1

Section 3.11.6.1

Volume 2, section 2.3.1.2

Are OO approaches adequate to define
all types of requirements?

Specifically, can we capture all
nonfunctional requirements of interest?

And can we avoid problems associated
with graphical grouping?

63, 75, 78, 79, 80 Section 3.10.3

Section 3.11.5.1

Section 3.11.6.1

Section 3.11.9.1

IL 78 and IL 80 may not be adequately addressed
in Volume 3.

Volume 2, section 2.3.1.2

A well-define means to map formal
specifications to natural language and/or
other less formal notations (e.g. UML) is
needed to make formal specifications
generally accessible.

73 Not addressed in Volume 3.

Volume 2, section 2.3.1.3

Have language features such as multiple
inheritance been evaluated carefully in
the planning process?

And have appropriate restrictions been
established, documented, and followed?

38, 58 Other issue list entries on multiple interface and
multiple implementation inheritance may
elaborate on the underlying issues that motivate
IL 38.

IL 38 and IL 58 may not be adequately addressed
in Volume 3.

Volume 2, section 2.3.2.1.1

Is subtyping used to improperly define
types that are not substitutable for their
parent types?

17, 22, 23, 42, 90,
95

Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.3.6.3,

Section 3.3.7.3 (optional), and

Section 3.3.8.3

3-2

Volume 3 DRAFT

OR

Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.3.6.3,

Section 3.3.7.3, and

Section 3.3.9.3

OR

Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.3.6.3,

Section 3.3.7.3 (optional), and

Section 3.3.10.3

Volume 2, section 2.3.2.1.2

How do we ensure that new methods
defined by a subclass do not introduce
anomalous behavior by producing a state
inconsistent with that defined by the
superclass?

91 Same as Volume 2, section 2.3.2.1.1 (above)

Section 3.3.12.3,

Section 3.4.4.3,

Section 3.4.5.3,

Section 3.4.6.3, and

Section 3.4.8.3

OR

Section 3.3.12.3,

Section 3.4.4.3,

Section 3.4.6.3,

Section 3.4.7.3, and

Section 3.4.8.3

Volume 2, section 2.3.2.2.1

How do we ensure that the developer’s
intent is always clear when using OO
features such as multiple inheritance,
and when creating very deep inheritance
hierarchies?

7, 10, 15, 21, 24,
25, 27, 28, 29, 30,
33, 37

In addition, the following section identifies an area
of active research related to the developer’s
understanding of data and control coupling
between inherited methods: Section 3.12.6.1

3-3

Volume 3 DRAFT

Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.5.3,

Section 3.3.6.3,

Section 3.3.7.3 (optional), and

Section 3.3.8.3

OR

Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.5.3,

Section 3.3.6.3,

Section 3.3.7.3, and

Section 3.3.9.3

Volume 2, section 2.3.2.2.2

How do we avoid errors associated with
the unintentional/accidental overriding of
methods?

20, 31, 92, 93, 94,
96, 97, 99

OR

Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.5.3,

Section 3.3.6.3,

Section 3.3.7.3 (optional), and

Section 3.3.10.3

Volume 2, section 2.3.2.2.2

How do we avoid the confusion and
human error associated with the
definition of overloaded operations that
have the same name but different seman
tics?

60 Sections 3.8.3.2 and 3.8.4.2

Volume 2, section 2.3.2.3.1

Traditional allocation and deallocation

66 Issue is not specific to OOT.

3-4

Volume 3 DRAFT

algorithms may be unpredictable in terms
of their worst-case memory use and
execution times, resulting in
indeterminate execution profiles.

Not addressed in Volume 3.

Volume 2, section 2.3.2.3.2

How do we ensure that subclass
methods are not called by superclass
constructors before all the attributes of
the subclass have been initialized?

19, 98 Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.5.3, and

Section 3.3.12.3

Volume 2, section 2.3.2.4.1

How do we identify dead and deactivated
code in OOT programs and reusable
components?

70, 71, 106 Section 3.11.8.1, Section 3.9.4.2, and Section
3.11.11.1

Volume 2, section 2.3.2.4.2

How do we ensure that deactivated code
is properly addressed when working with
general purpose libraries and
frameworks?

1, 57 Sections 3.9.3.2, 3.11.8.1, and 3.11.11.1

Section 3.3.4.2, assumption 3,

Section 3.3.4.3, Simple dispatch rule: ,

Section 3.4.5.3,

Section 3.6.3.2, and

Section 3.10.9.2

OR

Section 3.3.4.2, assumption 3,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.4.7.3,

Section 3.6.3.2, and

Section 3.10.9.2

Volume 2, section 2.3.3.1.1

Dynamic dispatch, polymorphism,
multiple implementation inheritance, and
inlining may complicate data and control
flow analysis.

2, 9, 16, 43, 56, 89

Note: In addition, the following section identifies
an area of active research: Section 3.12.6.1

Section 3.3.4.2, assumption 3.

Section 3.3.4.3, Simple dispatch rule:

Section 3.3.6.3, Substitutability compliance rule:

Section 3.3.8

Volume 2, section 2.3.3.1.2

How do we account for dynamic dispatch
and the run time classes of objects when
measuring the structural coverage of
object-oriented program?

5, 11, 48, 49, 55

OR

Section 3.3.4.2, assumption 3.

Section 3.3.4.3, Simple dispatch rule:

Section 3.3.6.3, Substitutability compliance rule:

Section 3.3.9

3-5

Volume 3 DRAFT

 OR

Section 3.3.4.2, assumption 3.

Section 3.3.4.3, Simple dispatch rule:

Section 3.3.6.3, Substitutability compliance rule:

Section 3.3.10

Volume 2, section 2.3.3.1.2

How do we measure structural coverage
when inliing and templates are used?

45, 47, 52 Sections 3.5.5.1.2, 3.5.5.3.2, and 3.6.3.2

Volume 2, section 2.3.3.1.3

How do we avoid problems related to
timing analysis when using dynamic
dispatch?

3 , 107 Section 3.3.4.3, Dispatch time rule:

Volume 2, section 2.3.3.1.3

How do we avoid problems related to
timing analysis when using inlining,
templates, and macro expansion?

44, 50, 53 Sections 3.5.3.3, 3.5.4.3, and 3.6.3.2

Volume 2, section 2.3.3.1.4

How do we provide source to object code
traceability when using dynamic
dispatch?

6, 8, 12 Section 3.3.4.3, Object code
traceability rule:

Volume 2, section 2.3.3.1.4

How do we provide source to object code
traceability in non-level A systems?

81 Source to object code traceability is not required
by DO-178B for non-level A systems.

Not addressed on Volume 3.

Volume 2, section 2.3.3.1.4

How do we provide source to object code
traceability when using inlining?

46 Section 3.6.3.2

Volume 2, section 2.3.3.1.4

How do we provide source to object code
traceability when using implicit type
conversion?

59 Sections 3.7.4.2, 3.7.5.2, and 3.7.6.2

Note: Above sections do not specifically address
performance and timing issues (IL59) nor source
to object code traceability (vol. 2, section
2.3.3.1.4).

Volume 2, section 2.3.3.2.1

How is functional coverage of low level
requirements determined?

62 Sections 3.5.4.3, 3.9.4.2, and 3.11.4.1

Volume 2, section 2.3.3.2.1

How do we ensure adequate
requirements coverage at all levels of
integration when the number of test
cases may be excessively large?

64 Section 3.3.10.3

3-6

Volume 3 DRAFT

Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.3.6.3,

Section 3.3.7.3 (optional),

Section 3.3.8.3, and

Section 3.11.7.1

OR

Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.3.6.3,

Section 3.3.7.3

Section 3.3.9.3, and

Section 3.11.7.1

Volume 2, section 2.3.3.2.2

To what extent can/should test cases
developed for a class be reused to test
its subclasses?

4, 18

OR

Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.3.6.3,

Section 3.3.7.3 (optional)

Section 3.3.10.3, and

Section 3.11.7.1

Volume 2, section 2.3.3.3.1

How do we define unique configuration
items in OOT systems?

76 Sections 3.10.4.2 and 3.11.11.1

Volume 2, section 2.3.3.3.2 34, 74, 88 Sections 3.4.4.3, 3.10.4.2, 3.11.4.1, 3.11.10.1,
and 3.11.11.1

3-7

Volume 3 DRAFT

OR

Sections 3.4.5.3, 3.10.4.2, 3.11.4.1, 3.11.10.1,
and 3.11.11.1

OR

Sections 3.4.6.3, 3.10.4.2, 3.11.4.1, 3.11.10.1,
and 3.11.11.1

How do OO tools and modeling
languages affect the way configuration
items are managed and changed?

OR

Sections 3.4.7.3, 3.10.4.2, 3.11.4.1, 3.11.10.1,
and 3.11.11.1

Volume 2, section 2.3.3.4.1

How do we ensure traceability between
functional requirements and object-
oriented implementations?

61, 69 Section 3.3.4.3, Simple overriding rule:,

Section 3.3.4.3,

Complete initialization rule:,

Section 3.3.4.3, Initialization dispatch rule:,

Section 3.3.4.3, Accidental override rule:,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.8.4.2,

Section 3.9.4.2,

Section 3.11.4.1, and

Section 3.11.9.1

Section 3.3.4.2, assumption 3,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.11.5.1,

Section 3.11.6.1, and

Section 3.11.7.1

Section 3.3.4.2, assumption 3,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.4.4.3,

Section 3.4.5.3,

Section 3.4.6.3

Section 3.11.5.1,

Section 3.11.6.1, and

Section 3.11.7.1

Volume 2, section 2.3.3.4.2

How do we ensure traceability when
constructing inheritance hierarchies?

13, 35, 104

Section 3.3.4.2, assumption 3,

Section 3.3.4.3, Simple dispatch rule:,

Section 3.4.4.3,

Section 3.4.6.3,

Section 3.4.7.3,

Section 3.11.5.1,

Section 3.11.6.1, and

Section 3.11.7.1

3-8

Volume 3 DRAFT

Volume 2, section 2.3.3.4.3

How do we deal with behavioral
requirements that map to multiple
graphical views in OOT models?

72 Sections 3.10.3 and 3.11.6.1

Volume 2, section 2.3.3.4.4

How do we maintain traceability when
using an iterative development process
that leads to a large number of changes
to a large number of artifacts?

105 Section 3.11.10.1

Volume 2, section 2.3.4.1

How can we ensure that visual modeling
tools support compliance with DO-178B
without introducing additional verification
burden?

101, 102 Sections 3.10.4.2, 3.10.5.2 and 3.10.6.3

Volume 2, section 2.3.4.1

How can we ensure that structural
coverage tools provide a reliable
mearsurement of the structural coverage
achieved?

103 Sections 3.10.7, 3.10.8.2, and 3.10.9.2

 Volume 2, section 2.3.4.2

Considering the rapid rate of tool
evolution and new tool types, how will
tools be identified and maintained to
meet long-term needs for development
and maintenance?

86 The known type of tools for which best practices
have been identified were addressed in the
Handbook.

Volume 2, section 2.3.4.2

Considering the rapid rate of tool
evolution and new tool types, how can
we ensure that tools are properly
controlled and retrievable?

84, 85 Issues are not specific to OOT.

Not addressed in Volume 3.

Volume 2. section 2.3.4.3

How is tool qualification assured to
address, for example, tool validation,
independence, configuration
management?

83 Issue is not specific to OOT.

Not addressed in Volume 3.

Volume 2. section 2.3.4.3

How can we ensure that tool qualification
criteria are appropriately identified and
applied to OO tools?

82, 100 Sections 3.10.5.2 and 3.10.4.2

Not categorized in Volume 2 26 Section 3.3.3

Not categorized in Volume 2 40 Not addressed in Volume 3.

Not categorized in Volume 2 51 Section 3.5.5.1.2

Not categorized in Volume 2 54 Not addressed in Volume 3.

Not categorized in Volume 2 65 Not addressed in Volume 3.

Not categorized in Volume 2 67 Not addressed in Volume 3.

Not categorized in Volume 2 68 Due to lack of mainstream languages that support
multiple dispatch, guidelines developed to
address this issue were dropped from the

3-9

Volume 3 DRAFT

handbook after the OOTiA Workshop #2.

Not addressed in Volume 3.

Table 3.2-1 Mapping of Key Concerns and Guidelines

3-10

3.3 Single Inheritance and Dynamic Dispatch

3.3.1 Purpose
This section provides guidelines for the safe implementation and use of single inheritance and dynamic dispatch
(also known as dynamic binding) in projects that use object-oriented (OO) technology (OOT).

3.3.2 Background
Inheritance. Inheritance supports the organization of object-oriented systems in terms of classes and class
hierarchies. This is a fundamental concept that permits OO systems to directly represent and classify objects
representing real-world entities from the problem domain without introducing redundancy.

Classes. Classes may define a variety of elements, including operations (which specify the services provided by the
class), methods (which provide the code to implement operations), attributes (which represent stored data values),
and associations (representing references to other objects).

Visibility. Class elements may be restricted in terms of their visibility. Unified Modeling Language (UML) [4], for
instance, distinguishes between elements that are visible to all clients that have access to the class itself (public
access), elements that are visible to clients within the same package (package access), and elements that are
accessible only to subclasses (protected access). Elements may also be accessible to both classes in the same
package and to subclasses (e.g., in Java), or to a named set of classes (e.g., in Eiffel).

Operations. Operations accessible to classes other than the defining class and its subclasses are sometimes referred
to as client operations. All operations are identified by their signatures. The signature of an operation consists of its
name and a list of the types of its parameters – the information needed to match a call to the operation being called.
Consider the UML definition of an operation “m (p: Integer, q: Float)”. The signature of this operation consists of its
name “m” and its parameter types “Integer” and “Float”. In some languages, the return parameter (if any) is
considered a part of the signature, while in others (such as C++) it is not.

Most OO languages support constructors and destructors. A constructor is an operation called by the run time
environment when a new object is allocated to ensure it is properly initialized. Conversely, a destructor is an
operation called by the run time environment when an object is deallocated to ensure any resources held by the
object are released. In most OO languages, a class may define more than one constructor, each with its own
signature. The constructor called by the run-time environment is the one that matches the arguments supplied by the
program at the point it requests the allocation of a new object. Destructors typically have no parameters and, as a
result, at most one destructor is associated with a class.

Constraints. Class definitions may also include constraints in the form of preconditions, postconditions, and
invariants. Preconditions represent constraints that must hold at the time a given method is called. Postconditions
represent constraints that are guaranteed to hold once execution of the method completes, provided its preconditions
were first met. Invariants represent constraints that are established by the class constructor and are considered to be a
part of the precondition and postcondition of every client operation. Additional constraints may also apply to the
relationships between classes. Constraints may be used to specify safety predicates as well as conditions for
correctness, and acceptable use.

Class hierarchies. Class hierarchies consist of classes connected via generalization relationships. In such a
relationship, the more general of the classes is termed the superclass, while the more specialized class is termed the
subclass. The relationship itself is also referred to as subclassing or subtyping.

The class hierarchy may be extended to any depth, although very deep class hierarchies may cause difficulties.
Subclasses inherit the elements of their superclasses. Subclasses may also extend these superclass definitions to
include additional elements they define themselves, or redefine elements by overriding their inherited definitions.

Single inheritance allows each class to have at most one immediate superclass, while multiple inheritance permits a
class to have more than one immediate superclass. Interface inheritance involves the inheritance of only interface
elements (such as operation specifications and constraints), while implementation inheritance involves the
inheritance of implementation elements (such as methods, attributes, and references to other objects).

 NOTE: This handbook does not constitute official policy or guidance from any of the certification authorities. 3-11

Volume 3 DRAFT

Polymorphism. In most object-oriented languages, an object is permanently assigned a run-time class at the point at
which it is allocated and initialized. Although the run-time class of the object never changes, the object can be
treated not only as a member of its run-time class, but also as a member of any superclass of this class. This ability
to treat an object as a member of any of its superclasses is referred to as polymorphism. Polymorphism supports the
replacement of general implementations with more specialized ones. It, however, requires strict adherence to
subtyping rules that guarantee that instances of subclasses behave like instances of their superclasses.

Substituability. The basic subtyping rules are those given by Liskov and Wing [7]. Because they guarantee that we
can substitute an instance of a subclass for an instance of a superclass, they are often collectively referred as the
Liskov Substitution Principle (LSP). Although the term LSP was not used by the authors [7], it has become a
convenient way to refer to the principles required to guarantee substitutability and will be used in such context to
discuss inheritance issues. The subtyping rules have also been popularized by Bertrand Meyer [17][18] in terms of a
contracting metaphor between the clients of a class and its implementation.

In contracting terms, the client is responsible for establishing the precondition of an operation before calling it.
Given this precondition, the method that implements the operation is then responsible for either delivering on the
postcondition, or reporting an error to the client. The class invariant is established by the constructor when the object
is first created, and must be maintained by all client operations. As a result, it is considered to be a part of the
precondition and the postcondition of every client operation. The class invariant, however, need not hold at all
points during the execution of a client operation, only at the beginning and at the end. This is sufficient to ensure
that temporary violations of the invariant are not observable by clients if data is encapsulated and calls to client
operations are properly synchronized.

Substitutability requires, quite simply, that subclasses not break the contract between client and implementation
established by their superclasses. This applies both to the redefinition of one operation by another operation and the
implementation of an operation by a method. As a result, the precondition of an operation in the subclass must be
weaker (demand less) or the same as the precondition of the same operation in the superclass. Conversely, the
postcondition must either be stronger (deliver more) or the same. Viewed in this way, substitutability requires that
we not demand more of clients, i.e., the types of input parameters must be either be made more general or left
unchanged, and that we deliver at least as much as promised, i.e., the types of output parameters must either be made
more specific or left unchanged.

With regard to errors, the subclass version of an operation can only report the same types of errors as its superclass
version. Otherwise clients would be expected to handle error cases that were not part of the original contract.

Substitutability also applies to changes to the signatures of operations introduced in subclasses. In this regard, the
types of an operation’s input parameters are logically a part of its precondition. Similarly the types of an operation’s
output parameters (and any return parameter type) are logically a part of its postcondition. In most OO languages,
dynamic dispatch is used to associate a method with a call based on the run-time type of the target object. Dynamic
dispatch is not related to dynamic linking or dynamic link libraries, nor is it any more dynamic than the use of a case
statement to explicitly select a method based on the run-time type of the target object.

Dynamic dispatch. Method selection based only on the type of the target object is referred to as single dispatch
(since it involves only consideration of the run-time class of the object, i.e., a single parameter). In a few OO
languages, method selection also includes the run-time classes of the remaining parameters. This is referred to as
multiple dispatch [14]. The methods considered for selection are referred to as multi-methods. Languages that
support multiple dispatch are more flexible in terms of the overriding of methods than single dispatch languages
(and able to deal more elegantly with issues such as the binary methods problem [12][13] Analogous to single
dispatch, multiple dispatch is logically equivalent to the use of a series of nested case statements for method
selection.

Issues and guidelines. A number of issues arise when using single inheritance and dynamic dispatch that may make
compliance with DO-178B difficult. Volume 2 documents the issues, related DO-178B sections and objectives, and
applicable guidelines. Guidelines assume that all source code is available for software developed to meet DO-178B
levels A, B, and C. In general, these “guidelines” do not represent new “guidance”, but an interpretation of existing
guidance (DO-178B) with respect to the use of particular OO features. The “rules” associated with these guidelines
are also rules only in the sense that they must be followed in order to adopt the given approach. Often there are also
alternative approaches that can be followed in order to address the same issues and still comply with DO-178B.

3-12

Volume 3 DRAFT

3.3.3 Overall Approach
This section is intended to provide an approach for addressing DO-178B objectives when using OO features related
to single inheritance and dynamic dispatch. The issues list appearing in volume 2 specifies potential obstacles to
DO-178B compliance. This list is not intended to address only OO unique issues, but also related issues that are of
particular importance to the use of single inheritance and dynamic dispatch.

Where it appears possible to use a feature or combination of features in a way that complies with DO-178B, we have
provided guidelines that describe an associated approach. The existence of these guidelines, however, does not
constitute a recommendation that the feature(s) be used, only acceptance that the given guidelines resolve the issues
in a manner consistent with DO-178B.

The overall collection of guidelines is also intended to be open-ended. As a result, new approaches and new
guidelines may be added that address the same issues as existing approaches, under different circumstances.

The guidelines on Inheritance with Overriding address the core issues related to inheritance, overriding and dynamic
dispatch. Because all these features are closely related, they are addressed together, rather than separately. In
addition, the rules apply both to redefinition of one operation by another and the implementation of an operation by
a method where operation and method are defined using UML1 [4]. The emphasis is on simplicity through the strict
enforcement of a small set of basic principles, an approach similar to that taken by Meyer with respect to Eiffel [18].

Note that, there may be some situations in which it is entirely reasonable to use inheritance to support code sharing
without intending to achieve type substitutability. The aim is usually to achieve aggregation with export of methods
(and possibly attributes) from the aggregated class(es). The problem is that most OO programming languages do not
distinguish this form of inheritance from subtyping inheritance (or provide a mechanism for aggregation with export
of features). Inheritance should be used for this purpose only when it is documented and the use of polymorphism
and dynamic dispatch in respect of these classes is avoided.

The guidelines on Subtyping and Formal Subtyping complement those on Inheritance with Overriding by specifying
how to test for superclass/subclass compatibility. Several different approaches are possible. The simplest involves
unit level testing and the inheritance of unit level test cases as in the guidelines for Unit Level Testing of
Substitutability. For organizations that want to do all testing at a system level, two approaches are provided. The
guideleines for System Level Testing of Substitutability Using Assertions involve instrumentation of the code with
assertion checks. The guidelines for System Level Testing of Substitutability Using Specialized Test Cases involve
the development of specialized versions of system level test cases for this purpose.

Note that, although the subtyping guidelines address compliance from a behavioral perspective, inheritance involves
both classification and implementation, and the valid use of inheritance need not be limited to subtyping (although it
often is, e.g., by UML).

The remaining guidelines address special cases and individual issues. The guidelines on Method Extension deal with
the definition of a subclass method as an extension of an inherited version of the same method. It applies most often
to constructors, but can be used to extend the implementation of any method.

The guidelines on Class Coupling address concerns related to flow analysis between superclass and subclass
definitions. They recommend the definition of an abstract interface between a class and its subclasses analogous to
the client interface for the class.

The guidelines on Deep Hierarchy provide a rule to help identify class hierarchies that are “too deep”. Unlike the
rules associated with the other patterns, this is intended only as a rule of thumb. Engineering judgment is required to
balance the tradeoffs associated with any proposed changes.

3.3.4 Inheritance with Overriding
This section provides a set of guidelines on the use of inheritance, overriding, and dynamic dispatch which are
equivalent to the use of hand-coded dispatch using case statements or compound if statements. When these

1 Use of UML is not a requirement. Users are free to choose their own approach to modeling and OO development.

3-13

Volume 3 DRAFT

guidelines are extended to include behavioral subtyping, they provide explicit criteria to verify substitutability.
These guidelines assume the use of languages that support single dispatch on the target object.

3.3.4.1 Motivation
The unrestricted use of dynamic dispatch raises a number of issues with respect to certification, especially with
regard to weakly typed languages, and systems that permit the run-time loading of new classes (that are not a part of
a previously verified system configuration). With suitable language restrictions (i.e., a precisely defined language
subset that permits use of static analysis techniques), dynamic dispatch is semantically equivalent to the use of hand-
coded dispatch methods containing nested case statements or compound if statements. The automation of dynamic
dispatch by the compiler is then equivalent to the auto-generation of these dispatch routines and inlined calls to
them. This treatment as an inlined call, combined with compliance with structural coverage criteria identified in
Sections 3.10 and 3.12 , provides a means to ensure compliance with DO-178B.

3.3.4.2 Applicability
These guidelines assume:

1. a strongly typed language,
2. single dispatch,
3. the set of classes associated with the system is statically known,
4. no dynamic classification (i.e. the run-time class of an object never changes)
5. use of polymorphism.

3.3.4.3 Guidelines
The following rules define a form of inheritance, overriding, and dynamic dispatch which is equivalent to hand-
coded dispatch using case statements or compound if statements:

1. Simple overriding rule:

An operation may redefine an inherited operation, and a method may implement an operation so long as changes
to its signature guarantee substitutability.

Specifically, a redefined operation may be made more visible to clients. And a redefining operation or
implementing method may be made more restrictive regarding the types of errors it can report to clients (e.g., as
exceptions or by setting error return codes).

With regard to parameter types, an operation may override an inherited operation or a method may implement an
operation by supertyping its input parameters, or subtyping its return type or the types of output parameters. The
types of parameters that represent both inputs and outputs must remain unchanged (invariant). No other form of
overriding should be allowed for languages supporting only single dispatch.

2. Accidental override rule:

To ensure that overriding is always intentional rather than accidental, design and code inspections should consider
whether locally defined features are intended to override inherited features with a matching signature2, 3.

3. Simple dispatch rule:

When an operation is invoked on an object, a method associated with the operation in its run time class should be
executed. This rule applies to all calls except explicit calls to superclass methods, which should be addressed as
described by the Method Extension guidelines.

2 When the language itself does not allow the user to make the intent to override an inherited operation/method explicit.
3 As defined in the Glossary, a feature is an attribute, operation, or method. This includes attributes that reference other objects (i.e., association
ends).

3-14

Volume 3 DRAFT

4. Complete initialization rule:

Every attribute must be initialized to a value consistent with the class invariant by the class constructor.

5. Initialization dispatch rule:

No overridden method should be called during the initialization (construction) of an object.

6. Dispatch time rule:

All dispatch times should be bounded and deterministic

7. Object code traceability rule:

Everywhere concerns about source code to object code traceability and timing analysis dictate, the compiler vendor
may be asked to provide evidence of deterministic, bounded mapping of the dispatched call. If the evidence is not
available from the compiler vendor, it may be necessary to examine the structure of the compiler-generated code
and data structures (e.g., method tables) at the point of call.

A dispatching method call is considered semantically equivalent to the invocation of a dispatching routine
containing a case statement of the form:

case of <target-object-run-time-class>

case <class>:

<statically-resolved-call-to-method-implemented-by-class>;

...

end

Each case of this case statement handles dispatch to an implementation of the method by the target object’s declared
type or one of its subclasses, i.e., the class corresponding to the object’s run time type.

With regard to the Simple overriding rule, the inability to subtype the types of input parameters does not preclude
the use of overloading for this purpose. The developer, however, must clearly understand that the selection of an
overloaded method is based on the declared types (rather than the run time types) of the arguments at the point of
call.

In accordance with the Simple dispatch rule, method calls are expected to be dispatching.4 Dispatch must account
for the run time type of the target. Static resolution is regarded as an optimization in those cases where only one
resolution is possible.

Note: The initialization rule is not intended to be an obstacle to the creation of “reset” operations that can be called
by clients to reinitialize on object after it has been constructed, or to the sharing of initialization code with class
constructors. It suggests only that the client reset operation (which has the class invariant as a part of its
precondition) and the constructors (which do not) call a non-overriden, internal operation that performs the
initialization steps common to them all.

The Simple overriding rule ensures substitutability is not violated at the language level, in terms of method
declarations. The Subtyping extends this to include testing for substitutability at the behavioral level. Compliance
with substitutability is necessary if instances of subclasses are to be treated as instances of their superclasses. This is
not only required by the UML definitions of generalization and inheritance, but a fundamental assumption
underlying the use of polymorphism and dynamic dispatch. Verification of substitutability for the most critical
software can be can be shown in one of two ways: 1) by testing each case at each call site (when dynamic dispatch is
only rarely used) or 2) by conforming to the Subtyping guidelines (more practical for software where dynamic
dispatch is more widely used).

4 In OOT languages such as Ada95, C++, and Java, binding occurs when the application is built, not at execution time. Only in languages such as
Smalltalk and Common Lisp is dynamic binding truly dynamic (execution time). In the other languages mentioned dynamic dispatch is no more
dynamic than a case statement, i.e., all alternatives are statically determined. As a result, the developer should avoid languages such as Smalltalk
and Lisp for avionics applications.

3-15

Volume 3 DRAFT

The accidental override rule is intended to guard against errors that could occur in languages that assume subclass
operations and methods override superclass operations and methods with a matching signature. This rule is
unnecessary if the language forces the developer to explicitly state that overriding is intended (as in C#).

The simple dispatch rule is intended to support a model of object-oriented behavior in which (1) each class can be
completely understood by looking at it in flattened form, and (2) the behavior of any object can be completely
understood by looking at the flattened definition of its run-time class. The simple dispatch rule guarantees this even
when the declared type of the object is a superclass of its run-time class (i.e., when polymorphism is used).

The initialization rule is intended to avoid errors that may arise during the construction of an object when a subclass
version of a method is called before associated subclass attributes have been initialized and the subclass invariant (if
any) has been established. In particular, the class invariant is implicitly a part of the precondition and postcondition
of every client operation, and the class invariant is not guaranteed to be true until the constructor completes. As a
result, we should not call overridden client operations during object construction. For similar reasons, special care
should also be taken with respect to calls to client operations in destructors, at other points where the class invariant
may no longer hold.

3.3.4.4 Related guidelines
The guidelines on Overloading and Method Resolution are closely related to those given in this section because both
overriding and overloading define families of operations whose specifications should be related by principles
guaranteeing substitutability.

The guidelines in the section Top Heavy Hierarchy provide metrics to limit the complexity of inheritance
hierarchies.

The Subtyping guidelines extend those appearing in this section to include the testing of substitutability at the
behavioral level.

3.3.5 Method Extension
Method Extension supports the implementation of an operation as an extension of an inherited method without
introducing redundancy, and with the assurance that the resulting postcondition is stronger than or the same as that
in the superclass. It helps to address issues related to initialization by allowing a subclass constructor to be defined
as an extension of its parent class constructor, without introducing problems related to the use of dynamic dispatch
during initialization.

3.3.5.1 Motivation
Often we want to provide a subclass version of an operation that extends the functionality provided by the operation
in its superclass. This extension in functionality must be consistent with substitutability. As a result, the precondition
for the subclass operation must be weaker than or the same as its precondition in the superclass, and the
postcondition for the subclass operation must be stronger than or the same as its postcondition in the superclass.

By implementing an extended operation in terms of an explicit call to the superclass method, preceded or followed
by additional code, we are able to:

• avoid repeating the code appearing in the superclass method,
• provide code before the call to handle the additional cases implied by a weaker precondition5,
• provide code after the call that adds to its effect, as implied by a stronger postcondition.

Such explicit calls to superclass methods are by their nature statically bound, and do not involve dynamic dispatch.
The code that follows the call to the superclass method must not undo its effects in order for the overall
postcondition to be an extension of that for the superclass.

5 Weakening the precondition makes it valid to call an operation with additional inputs or input combinations. Consider the operation f(p:
Integer) pre p > 0. If we weaken the precondition to give us f(p: Integer) pre p ≥ 0., then the implementation must handle the additional case in
which p is zero.

3-16

Volume 3 DRAFT

3.3.5.2 Applicability
These guidelines are commonly applied to constructors, which begin by calling the constructor for the superclass,
then initialize all the attributes defined by the class itself. It may also be used to select between competing inherited
versions of a method (multiple implementation inheritance).

3.3.5.3 Guidelines
The following rule for method extension represents the sole exception to the Simple dispatch rule given in 3.3.4.3:

Method extension rule: When extending the functionality of an inherited method, the subclass method should
explicitly call the superclass version of the same method.

Note that the terms method and operation are used in accordance with the UML definitions (see Glossary) since
some languages blur the distinction. Implementation of method extension in different target languages is described
in section B.1.2.

3.3.5.4 Related guidelines
The guidelines on Method Extension represent the sole exception to the Simple dispatch rule given in section
3.3.4.3.

3.3.6 Subtyping
The Subtyping guidelines extend the Inheritance with Overriding guidelines (which addresses substitutability at a
language level in terms of operation signatures) in order to verify compliance with substitutability at a behavioral
level.

3.3.6.1 Motivation
DO-178B verification activities may involve testing (at either a unit or system level), the use of formal or informal
proofs, or other techniques. This section does not prescribe a particular approach. That is left to those sections that
extend the basic guidelines given in this section.

Intuition can be misleading when it comes to subtyping relationships. We might, for instance, think (intuitively and
mathematically) that all squares are rectangles, so Square should be a subclass of Rectangle. Whether Square should
be a subclass of Rectangle, however, should not be based on our intuition, or any mathematical definition, but on the
interfaces we define for these classes. If the interface for Square specializes the interface for Rectangle in
accordance with substitutability, then it is appropriate for it to be a subclass of Rectangle. Otherwise, it is not [11].

By assuming that instances of subclasses must always be substitutable for instances of their superclasses, these
guidelines restrict the preconditions and postconditions of redefined operations in addition to their signatures.
Formally, the precondition for a redefined operation must be weaker than or the same as the precondition of the
operation it redefines. Conversely, the postcondition for a redefined operation must be stronger than or the same as
the postcondition of the operation it redefines.

In terms of the client interface, this means that a subclass is compatible with a superclass if we:

(1) expect no more of clients than we do in the superclass (the preconditions of overridden operations are weaker or
the same), and

(2) deliver at least as much (the postconditions of overridden operations are stronger or the same).

The same rules apply to the relationship between methods and the operations they implement: the precondition for
an implementing method must be weaker than or the same as the precondition of the operation its implements, and
the postcondition for an implementing method must be stronger than or the same as the postcondition of the
operation it implements.

3-17

Volume 3 DRAFT

Note that in real time systems, the deadline by which a method must complete may be treated as part of the post-
conditions. If it is important to know up-front in system development that timing constraints are met, then every
implementation must be required to meet its respective timing bound. Otherwise, when complete closure exists, the
system as a whole must be tested to insure it meets its required bounds. In a broader sense, post-conditions can
address other quality of service (QOS) issues in addition to timing constraints.

3.3.6.2 Applicability
These guidelines apply when instances of different subclasses may be assigned (polymorphically) to a given variable
or parameter.

3.3.6.3 Guidelines
The guidelines in this section extend those on Inheritance with Overriding in section 3.3.4 to include the following
additional rules.

1. Minimum compatibility rule:

At a minimum, superclass/subclass compatibility should be verified with respect to all classes involved in the
polymorphic assignment of different subclass instances to the same variable or parameter during the execution of
the system.

2. Substitutability compliance rule:

Any approach used to verify superclass/subclass compatibility should be consistent with the principles of behavioral
subtyping defined by Liskov and Wing [7].

As specified by UML, the semantics of subclassing implies superclass/subclass compatibility in accordance with
substitutability. In practice we must, at a minimum, ensure that we verify this in all cases where instances of
different subclasses may be associated with the same variable or parameter during the execution of the system under
test.

Additional guidelines are defined by a number of sections that extend these basic guidelines. These guidelines vary
with the approach used to verify superclass/subclass compatibility. The standard for superclass/subclass
compatibility, however, is the same: compliance with the principles of behavioral subtyping defined by [7].

3.3.6.4 Related guidelines
Related guidelines include those for Formal Subtyping.

3.3.7 Formal Subtyping
The Formal Subtyping guidelines apply the principles of Design by Contract [17] with formally defined
pre/postconditions and invariants. By requiring formal specification of the classifiers to be checked in a
precondition/postcondition/invariant style, these assertions can then be used to either generate the needed test cases,
or as the basis for analysis and formal proofs. Providing a complete and precise specification of the interface also
helps prevent errors by making the contract between the clients and implementers of a class explicit, makes it easier
to enforce rules for substitutability, and supports the traceability of high level requirements to low level
requirements.

3.3.7.1 Motivation
The signature of an operation, which includes its name, parameter types, result types (if any), and errors (if any),
provides clues to the operation’s behavior but, by itself is insufficient. Comments that describe the purpose of the
operation and the relationships between inputs, outputs, and errors are also helpful. But most comments are
informal, cannot be processed by tools, and lack the precision to serve as a basis for analysis, proofs, or the
development of test cases.

3-18

Volume 3 DRAFT

As a result, it is generally recommended that class interfaces be specified in a precondition/postcondition/invariant
style (an approach referred to by Meyer as ‘Design by Contract’). Expressing low level requirements in this way
helps prevent errors by making the semantics of the interface clear to developers before client code is written. Such
specifications can also be processed by tools and used as a basis for analysis, formal proofs, and the generation of
test cases. This, in turn, supports reverification and regression testing in response to changes to the class introduced
in order to comply with other guidelines.

It is also useful to specify global data access and information flow relations as part of an operation’s contract. While
these are not as strong as the recommended precondition/postcondition/invariant style, they can be efficiently
checked and also used as the basis for analysis, formal proofs, and the generation of test cases.

3.3.7.2 Applicability
These guidelines apply when instances of different subclasses may be assigned (polymorphically) to a given variable
or parameter.

3.3.7.3 Guidelines
The guidelines in this section extend those on Subtyping (section 3.3.6) to include the following rules:

Explicit pre/postcondition/invariant rule: To ensure that all classes define their interfaces as contracts, all
pre/postconditions and invariants for operations and methods must be explicitly stated and all errors returned by
them must be specified. Unless the program is to be subjected to automated format analysis, this includes
pre/postconditions, invariants, and error lists that are considered to be trivial (e.g., conditions whose value is true,
and error lists that are empty).

Frame condition rule: Unless the language provides a separate mechanism for indicating which variables may and
may not change, ideally each postcondition should also include a ‘frame condition’ which indicates which variables
are guaranteed not to change as a result of executing the operation/method.

Software developers tend to rely on testing to verify substitutability. While associated test cases may be developed
at either the system or the unit level, the development of test cases alone, however, has its limitations. Test cases are
no substitute for a complete, precise specification of behavior, which is needed by the clients of a class, and by
developers seeking to subclass an existing class.

A complete and precise specification of behavior is also needed in order to develop the test cases for a class and to
provide traceability from high level to low level requirements. As a result, it is generally recommended that class
interfaces be specified in a precondition/ postcondition/invariant style (an approach referred to by Meyer as ‘Design
by Contract’). This style provides the basis to make compliance with substitutability easier and helps avoid errors by
making contracts between clients and classes explicit. In addition, explicit statement of pre/postcondition and
invariants can be used to generate unit level test cases, or can be used as the basis for formal analysis and proofs.

Realistic implementation of these guidelines requires the use of an unambiguous programming language and
application of static analysis techniques.

3.3.7.4 Related guidelines
Related guidelines include those for Unit Level Testing of Substitutability, System Level Testing of Substitutability
Using Assertions, and System Level Testing of Substitutability Using Specialized Test Cases.

3.3.8 Unit Level Testing of Substitutability
The guidelines in this section check for superclass/subclass compatibility by requiring that all unit level test cases
associated with a class are inherited by its subclasses. These guidelines help address the same issues as those defined
for Subtyping.

3-19

Volume 3 DRAFT

3.3.8.1 Motivation
The verification of superclass/subclass compatibility is straightforward if we develop a set of unit level test cases for
all classes identified by the minimum compatibility rule (Subtyping).

Subtype compatibility then means that all superclass test cases should run successfully against all subclass instances
(superclass test cases are inherited by subclasses) provided that all such tests satisfy the method precondition(s)
involved, taking account of any dynamic dispatch involved in evaluating the precondition. Subclasses also often
extend this set of superclass test cases to include their own more specialized tests (the subclass test set is a superset
of the superclass test set).

3.3.8.2 Applicability
These guidelines apply when concerns exist about compatibility between specific classes, and test cases are written
to directly test these classes. Typically, this applies to low-level requirements. These guidelines should be applied to
situations where instances of different subclasses may be assigned at run-time to a variable or parameter whose
declared type is an associated superclass (polymorphic assignment).

In contrast to other Subtyping guidelines, the guidelines in this section are most effective when the development
organization relies on a combination of system level and class level testing, rather than on system level testing alone.
Separate sections address System Level Testing for Substitutability (see the guidelines for System Level Testing of
Substitutability Using Assertions and System Level Testing of Substitutability Using Specialized Test Cases).

3.3.8.3 Guidelines
The guidelines in this section extend those on Subtyping (section 3.3.6) to include the following rules which apply to
all classes identified by the minimum compatibility rule:

Inherited test case rule: Every test case appearing in the set of test cases associated with a class should appear in
the set of test cases associated with each of its subclasses.

Separate context rule: If dynamic dispatch is involved in the execution of a method, the method should be
separately tested in the context of every concrete class in which it appears, irrespective of whether it is defined by
the class or inherited by it, provided that all such tests take account of the method precondition(s) involved, taking
account of any dynamic binding involved in evaluating the precondition. An exception is made for methods that are
guaranteed not to directly or indirectly invoke a method that is dynamically bound with respect to the current object,
for example, simple get and set methods that only assign a value to, or return the value of an attribute or
association. Such methods need only be tested once, in the context of the defining class.

These rules are intended to imply that all inherited test cases (other than those for simple gets and sets) should be run
against instances of all concrete subclasses. As a result, changes to the code inherited by a class that affect its
flattened form should result in its retest precisely as if the class itself had been edited.

The inherited test case rule is intended to apply to all test cases, including those introduced solely to meet structural
coverage criteria. It could be argued that such tests should only be inherited when the tested code is also inherited. It,
however, seems simpler and safer to recommend that they be inherited in all cases, since they should pass when run
against the subclass.

When applying the inherited test case rule, if the subclass invariant is stronger than that of its superclass, then a
check of this invariant (rather than the weaker superclass invariant) should be a part of the pass/fail check of each
inherited test case. In this way, the “missing override” issue is resolved.

The separate context rule is intended to ensure that superclass methods are separately tested in the context of each
subclass. This recommendation addresses the fact that even when a given method is inherited without change, the
methods called by it may be overridden in the subclass, leading to a different behavior. An exception is made for
methods that are guaranteed not to directly or indirectly invoke a method that is dynamically bound with respect to
the current object, for example simple get and set methods that reference only data, and do not call other methods. A
more complete impact analysis could be used to determine whether other inherited methods need to be retested in

3-20

Volume 3 DRAFT

the context of each subclass. The guidelines in this section, however, assume it is simpler and easier to rerun such
tests than to perform such an analysis.

Note that testing in accordance with these guidelines will ensure that all dispatch table entries are exercised at some
call site, equivalent to providing MC/DC of the case statement assumed to be associated with the dispatch routine.

Although not required to use these guidelines, it is recommended that class interfaces be specified in a pre/post-
condition style prior to writing test cases (an approach referred to by Meyer [17] as ‘Design by Contract’).
Expressing low-level requirements in this way helps prevent errors by making the semantics of the interface clear to
developers before client code is written. Pre- and post- conditions may be specified in a variety of ways, e.g. as
informal comments, as formal annotations, in table form, in terms of a state diagram, or in terms of executable run
time checks used by a test driver. Such pre- and post- conditions may also be useful as input to test case generation
tools.

Although these guidelines typically apply to the testing of low-level classes and requirements, they can be used at a
high level if the classes and subclasses to be tested for compatibility represent a software system or a subsystem. For
example, given a class System with subclasses SystemA and SystemB, SystemA and SystemB should inherit the test
cases defined for System (which are based on the high level requirements common to both of them).

3.3.8.4 Related guidelines
Related guidelines include those for System Level Testing of Substitutability Using Assertions, System Level Testing
of Substitutability Using Specialized Test Cases, and Percolation [11, pp. 882-896].

3.3.9 System Level Testing of Substitutability Using Assertions
The guidelines for System Level Testing of Substitutability Using Assertions check for superclass/subclass
compatibility by instrumenting a version of the software with assertion checks related to substitutability. Existing
system level test cases are then run (without change) against this version (to test for substitutability violations), then
run a second time against the uninstrumented target version of the software. These guidelines help address the same
issues as those for Subtyping.

3.3.9.1 Motivation
Some projects prefer to focus exclusively on system level, requirements based testing, without developing any unit
level/class level test cases. Use of the Unit Level Testing of Substitutability is clearly in conflict with this approach.
A number of programming languages and tools, however, support the selective use of pre- and post- condition and
invariant declarations as run time checks. One particularly simple way to test for substitutability at a system level is
to take advantage of the use of these checks to verify superclass/subclass compatibility for classes identified by the
minimum compatibility rule (Subtyping). This does not involve any substantial changes to existing system level,
requirements based tests. It does, however, require that these tests be run against both an instrumented and
uninstrumented version of the software.

3.3.9.2 Applicability
These guidelines apply when concerns exist about the substitutability of various subclasses for one another at run-
time and requirements-based test cases are written to test these configurations. Typically, the test cases are based on
high-level requirements.

Although these guidelines typically apply to the testing of high-level requirements at a system level, they can also be
applied at a subsystem level, in terms of low-level or derived requirements. These guidelines differ from those for
the Unit Level Testing of Substitutability in that test cases are written against some entity (e.g., system or
subsystem) that contains instances of the classes we wish to test for compatibility, and not directly against these
classes.

Use of these guidelines is straightforward if a project already instruments the code to measure structural coverage, or
is already defining interfaces as contracts [17][18, Design by Contract]. These, though, are not prerequisites.

3-21

Volume 3 DRAFT

The guidelines, however, do assume that system level test cases have been developed (or will be developed) to test
for all system configurations in which instances of various subclasses may be substituted for one another at run time.
(Development of these test cases should be driven by high-level requirements related to substitutability).
Substitutability related assertions require language or tool support.

As with the instrumentation of code for any reason (e.g. measurement of structural coverage), care should be taken
to account for the overhead associated with the run time checks involved, e.g., timing may be affected. It is also
necessary to consider what should be done if any of the conditions (pre-, post-, and invariant) are violated, i.e.,
handling of exceptions needs to be accounted for.

3.3.9.3 Guidelines
The guidelines in this section extend those for Subtyping (section 3.3.6). The following rules describe the type of
assertion checks required to test for superclass/subclass compatibility in accordance with substitutability. Such
checks should be performed on all classes identified by the minimum compatibility rule.

Precondition assertion rule: An assertion to check the operation’s precondition should appear before the body of
all methods that implement a public operation. In accordance with substitutability, this precondition may only be
weakened or the same in overridden versions of the operation.

Postcondition assertion rule: An assertion to check the operation’s postcondition should appear after the body of
all methods that implement a public operation. In accordance with substitutability, this postcondition may only be
strengthened or the same in overridden versions of the operation.

Invariant assertion rule: An assertion to check the operation’s invariant should be a part of the precondition check
and the postcondition check of all public operations. In accordance with substitutability, the invariant may only be
strengthened or the same in all subclasses of a class.

Instrumented/uninstrumented testing rule: A test case run against an instrumented version of the code should be
considered to pass only if all assertion checks associated with substitutability hold during its execution. A test case
run against an uninstrumented version of the code should be considered to pass only if it produces the same result
that it did when run against an instrumented version of the same code.

The first three rules echo the basic principles of substitutability. Some languages (such as Eiffel [17][18]) enforce
these rules directly and provide facilities for enabling and disabling associated run time checks, as required for
instrumented/ uninstrumented testing. In other languages (such as C++ and Java), it is possible to use language level
assertions to achieve the same effect, although the substitutability relations between preconditions, postconditions
and invariants must be enforced by code reviews. A subset of the language that is amemable to use of
substitutability and that will help static analysis should strongly be considered.

A simple way in which to ensure that these relations hold is to require that:
• new preconditions be of the form ‘overridden_ pre or some _condition’
• new postconditions be of the form ‘overridden_post and some_condition’
• new subclass invariants be of the form ‘superclass_invariant and some_condition’.

Otherwise the precondition, postcondition or invariant must be the same.

Tool support is also available from a number of sources. Usually this includes enforcement of the first three rules,
and a facility for enabling and disabling the use of assertions as run time checks (analogous to Eiffel). Assertions
may be written in a number of notations, ranging from simple boolean expressions in the target language to first
order logic [20], with quantification.

Assertions may also be introduced at an analysis or design level and mapped down to run time checks in the target
language. Many tools that favor this approach, however, rely on proofs for verification, rather than the introduction
of run time checks.

Binder discusses the instrumentation of the code with substitutability run time assertion checks in detail (with
examples and sample code) in his Percolation pattern [11, pp. 882-896].

3-22

Volume 3 DRAFT

Not all assertion checks should necessarily be removed in the uninstrumented version of the code. In accordance
with the advice of Liskov and Guttag, “it is usually worthwhile to retain at least the inexpensive checks” [8, p. 251].

3.3.9.4 Related guidelines
Related guidelines include those defined for Percolation [11, pp. 882-896], Unit Level Testing of Substitutability,
and System Level Testing of Substitutability Using Specialized Test Cases.

3.3.10 System Level Testing of Substitutability Using Specialized Test Cases
The guidelines in this section check for superclass/subclass compatibility by developing system level test cases in a
manner that first ignores compliance with substitutability and then introduces specialized versions of existing system
level test cases to explicitly test for substitutability compliance. These guidelines help address the same issues as the
those for Subtyping.

3.3.10.1 Motivation
Some projects prefer to focus exclusively on system level, requirements-based testing, without developing any unit
level /class level test cases. Use of the Unit Level Testing of Substitutability is clearly in conflict with this approach.
There are, however, ways to test for substitutability at a system level. One approach involves the development of
specialized system level tests for this purpose. This has the advantage of avoiding instrumentation (guidelines for
System Level Testing of Substitutability Using Assertions) although it typically requires that test cases be developed
with this approach in mind.

3.3.10.2 Applicability
These guidelines apply when concerns exist about substitutability of various subclasses for one another at run-time
and requirements-based test cases are written to test these configurations. Typically, the test cases are based on high-
level requirements.

Although these guidelines typically apply to the testing of high-level requirements at a system level, they can also be
applied at a subsystem level, in terms of low-level and derived requirements. They differs from the guidelines for
Unit Level Testing of Substitutability in that test cases are written against some entity (e.g., system or subsystem)
that contains instances of the classes we wish to test for compatibility, and not directly against these classes.

Use of these guidelines is straightforward if test cases have not yet been developed, or if the current set of test cases
ignores substitutability.

3.3.10.3 Guidelines
The guidelines in this section extend those for Subtyping (section 3.3.6). The following rules relate to the process
used to develop system level test cases to test for substitutability [3, section 5]. They assume that, with suitable
language restrictions, dynamic dispatch is semantically equivalent to the use of hand-coded dispatch methods
containing case statements or compound if statements. The rules begin with conformance to coverage criteria based
on inlined calls to a case statement with MC/DC testing for Level A systems. They culminate in conformance to
coverage criteria that guarantees substitutability between subtypes and supertypes.

Generalized test case rule: First construct a set of system level test cases to meet the required DO-178B coverage
criteria while considering only the declared classes of objects and object references. The run time classes of
objects and dynamic dispatch should be ignored other than to mark test cases that include dispatching calls as
polymorphic.

Specialized test case rule: Next create a set of specialized test cases for each polymorphic test case that are
explicitly designed to test for substitutability. The set of test cases generated from a given polymorphic test case
should be designed to drive dynamic dispatch down different paths with regard to the selection of subclass
methods. The initial state and resulting state associated with each specialized test case should be compatible (in
terms of substitutability) with the more general test case from which it was derived.

3-23

Volume 3 DRAFT

Although the steps to comply with the above-listed rules are the same, it is also possible by complying with the
following rules to develop a set of test cases that meet any of a number of different substitutability-related coverage
criteria.

Min Substitutability coverage rule: By this test case coverage criteria, the full set of specialized test cases must
exercise dynamic dispatch to subclass methods to the extent required to meet the structural coverage criteria of
DO-178B.

Max Substitutability coverage rule: By this test case coverage criteria, the set of specialized test cases derived from
each polymorphic test case must exercise all reachable subclass methods at each point of call involving dynamic
dispatch.

Mid Substitutability coverage rule: By this test case coverage criteria, the full set of specialized test cases must
meet the criteria set by the Min Substitutability coverage rule. Additional specialized test cases, however, are
introduced to test specifically for the types of problems raised by issues 20, 21, 22, 26, and 40 identified in Volume
2, Appendix B of this Handbook.

Compliance with DO-178B objectives requires conformance to the Min Substitutability coverage rule. This rule is
designed to rely on DO-178B to set the criteria for test case coverage. Rather than require additional test cases to test
for substitutability, it takes advantage of the process for test case generation to add substitutability-related
compatibility checks to the test cases created (“The initial state and resulting state associated with each specialized
test case should be compatible (in terms of substitutability) with the more general test case from which it was
derived.” [7]). This is not as rigorous as the process of the Unit Level Testing of Substitutability, but it does make
the most of the test cases already required by DO-178B.

The Max Substitutability coverage rule matches the degree of rigor offered by the Unit Level Testing of
Substitutability, and exceeds it. It is most appropriate when the DO-178B software level is high (e.g. level A) and
the number of calls involving dynamic dispatch is small. If run-time substitution of different subclass instances is
commonplace (Subtyping, minimum compatibility rule), exhaustive testing of all subclass methods in the context of
every system level test case is impractical. Typically, however, the most safety critical applications are also the most
static, making this level of substitutability test coverage acceptable in many cases.

The Mid Substitutability coverage rule attempts to strike a balance between the previous coverage criteria by
requiring compliance with the Min Substitutability coverage rule, but adding rigor through the introduction of
additional test cases targeted specifically to the types of problems raised 20, 21, 22, 26, and 40 identified in Volume
2, Appendix B of this Handbook. Additionally, explicit robustness test cases may need to be developed but this is
not unique to substitutability-related testing [19].

Tools are often used to verify structural coverage criteria. Structural coverage analysis tools for OO languages
should measure coverage for each polymorphic reference and each resolution for each set of identical polymorphic
references. When a tool does not have the capability to measure coverage in this way, then a process will need to be
performed to augment the tools analysis capabilities to satisfy structural coverage objectives. The sets of rules in this
section may be used to augment a tool’s capability to meet DO-178B structural coverage objectives. A clarification
of the coverage requirements for class structure versus the coverage of method internals within the class structure is
found in sections 3.10.8 and 3.10.9.

3.3.10.4 Related guidelines
Related guidelines include those for Unit Level Testing of Substitutability, System Level Testing of Substitutability
Using Assertions, and Percolation [11, pp. 882-896].

3.3.11 Class Coupling
The guidelines in this section limit control flow and data flow between clients and classes and between classes and
subclasses to facilitate future changes and to simplify analysis.

3-24

Volume 3 DRAFT

3.3.11.1 Motivation
One of the fundamental principles of object-oriented development is data abstraction. The goal is to hide the details
of the data representation behind an abstract class interface. This permits the data representation to change without
affecting other classes. It also simplifies the enforcement of class invariants, and permits control over concurrent
access to shared data. Extending this principle, we can use abstract class interfaces to control access to hardware
resources as well as data.

For example, consider the implementation of a class for a set. The selection of an optimum data representation (list,
tree, hash table, etc.) will vary depending on the mix of operations required by the application. Typical strategies
involve a choice between a sorted and a hashed representation, and a choice between fast insert/delete and fast
lookup. The use of data abstraction makes it easy to change this representation with no significant change to client
code.

The same situation arises with respect to the abstraction of other resources. For example, a number of different
hardware devices may perform a given function, or a number of different caching policies may be associated with
access to a given file system, or a number of different ways may exist to represent the elements of a given display,
with a number of different strategies for drawing/redrawing them. In all these cases, we want to publish a single
interface but support a number of different underlying implementations and data representations.

In terms of DO-178B, data abstraction supports partitioning [1, p. 9, section 2.3.1] by permitting the developer to
restrict access to the resources controlled by the class. By limiting the degree of control and data coupling between
software components, we also simplify analysis [1, p. 74, objective 8] and make it easier to verify key system
invariants maintained by a given class [1, p. 70, objectives 1 and 4].

To be effective, the interface should provide a true abstraction of the data and other resources controlled by the
class, rather than simple accessors (get and set operations) for each attribute or hardware register. Any invariants
associated with the class should be established by the class constructor, and maintained by every publicly accessible
operation. Access restrictions associated with the class interface permit a proof of the invariant to be local to the
class, rather than global to the system and different for each system in which the class appears.

These principles apply not only to interfaces provided by the class to clients but to interfaces between superclasses
and subclasses. In particular, it should be possible for the developer to define the interface between a class and its
subclasses in the same manner as the interface between the class and its clients. Both can be considered ‘contracts’,
only with different parties. The interface between client and class is concerned with how the class will be used. The
interface between superclass and subclass is concerned with how the class definition and implementation can be
extended. Both can be defined formally (in terms of pre- and post- conditions) when desired.

3.3.11.2 Applicability
These guidelines apply when control and data coupling between classes is a concern in an object-oriented system.
Access to the attributes of a class is provided by public and protected operations, which can be inlined to avoid the
overhead associated with a call, producing code comparable to that for direct access. When performance is critical,
but the target compiler does not support inlining or does not perform inlining efficiently, use of these guidelines may
not be appropriate.

3.3.11.3 Guidelines
The following rules address the basic issues associated with Class Coupling:

Client data abstraction rule:

- Clients should access the data representation of the class only through its public operations.

- All attributes should be hidden (private or protected), and all strategies associated with the choice of data
representation should be abstracted by its set of public operations.

- All hardware registers should be hidden (private or protected), and all strategies associated with the use of a
particular hardware device should be abstracted by its set of public operations.

3-25

Volume 3 DRAFT

Invariant rule: The invariant for the class should be:

- an implicit or explicit part of the postcondition of every class constructor,

- an implicit or explicit part of the precondition of the class destructor (if any),

- an implicit or explicit part of the precondition and postcondition of every other publicly accessible operation.

As a result, clients should be able to influence the value of the invariant only through execution of these operations.
Private and protected operations are exempted in the invariant rule since the invariant need not hold at all times, but
only at points where it is externally observable.

These guidelines may be extended to deal with the coupling between classes and subclasses by also adopting the
following rule:

Subclass data abstraction rule:

- A subclass should access the data representation of its superclass only through the superclass’ public and
protected operations.

- All attributes should be hidden (private), and all strategies associated with the choice of data representation
should be abstracted by its set of public and protected operations.

- All hardware registers should be hidden (private), and all strategies associated with the use of a particular
hardware device should be abstracted by its set of public and protected operations.

- The class invariant should also be an implicit or explicit part of the precondition and postcondition of each
protected method of a class, and part of the postcondition of every protected constructor.

To be most effective, both the client and subclass interfaces should provide a true abstraction of the data and other
resources controlled by the class, rather than simple accessors (get and set operations) for each attribute or hardware
register.

3.3.12 Deep Hierarchy
The guidelines in this section address issues that can occur when the complexity of class hierarchies is very deep.

3.3.12.1 Motivation
Most class hierarchies have a characteristic depth of between three and six, irrespective of the application. Class
hierarchies that are either too deep or too shallow can cause problems. Dynamic dispatch can introduce problems
related to initialization, especially with regard to deep class hierarchies. Top-heavy multiple inheritance and deep
hierarchies also tend to be error-prone, even when they conform to good design practice. The wrong variable type,
variable, or method may be inherited, for example, due to confusion about a multiple inheritance structure. Binder
refers to this as “spaghetti inheritance” [11].

3.3.12.2 Applicability
These guidelines apply when the complexity of the class hierarchy is a concern.

3-26

Volume 3 DRAFT

3.3.12.3 Guidelines
The following rule addresses the issues associated with Deep Hierarchies:

Six deep rule: Any class hierarchy with a depth greater than six warrants a careful review that specifically
addresses the above issues and weighs this against the need to isolate various proposed changes. When extending
an existing framework, depth should be measured from the point at which the framework is first subclassed. When
developing an application specific class hierarchy, depth should be measured from the root. In languages in which
all classes implicitly inherit from a common root class, this class should not be included in the count.

A class hierarchy that successfully passes an inspection should be marked so as to avoid repeated review with
respect to the same issue.

A certain amount of variation in the threshold (e.g., plus or minus two) may also be expected based on the results of
reviews using the six deep threshold. Deep hierarchies may also be more of a problem with respect to
implementation inheritance than interface inheritance. The use of multiple inheritance can also be an important
factor in adjusting the threshold.

This rule is based on the metrics for Class hierarchy nesting level appearing in [9, pp. 61-64]. Note that this rule
does not, in anyway, imply that class hierarchies with a depth of six or less do not require careful review.

3.3.12.4 Related Guidelines
Related guidelines include those for Inheritance with Overriding, Multiple Interface Inheritance, and Multiple
Implementation Inheritance.

3-27

Volume 3 DRAFT

3.4 Multiple Inheritance

3.4.1 Purpose
This section provides guidelines regarding safe implementation and use of multiple inheritance in projects that use
object-oriented (OO) technology.

3.4.2 Background
Single inheritance, overriding, subtyping, and dynamic dispatch are described in Section 3.3. Multiple inheritance
permits a class to have more than one superclass. It may involve either interface inheritance or implementation
inheritance, or some combination of these. Interface inheritance involves the inheritance of only interface elements
(such as operation specifications and constraints), while implementation inheritance involves the inheritance of
implementation elements (such as methods, attributes, and references to other objects).

Multiple inheritance may lead to name clashes involving elements inherited from different superclasses that have the
same signature. Some languages support renaming as a means of resolving such name clashes. Eiffel is particularly
elegant in dealing with this [18]. Most other languages either require more complicated workarounds [22, section
12.8] or the editing of the superclass definitions to rename inherited elements.

Most issues arise with respect to multiple implementation inheritance because it is difficult to implement well,
because associated errors have run-time consequences, and because the inherited elements reference one another and
may interact in subtle ways, increasing overall complexity and the potential for error.

Because delegation is considered an effective substitute for multiple implementation inheritance, many more recent
languages (such as Java and C#) only support multiple inheritance involving interface specifications. The Aerospace
Vehicle Systems Institute (AVSI) Guide [21] also recommends the use of delegation rather than multiple
implementation inheritance for systems certified to levels A, B, and C.

A number of issues arise when using multiple inheritance that may make compliance with DO-178B difficult.
Section 3.4 documents the issues, related DO-178B sections and objectives, and applicable guidelines.

In general, these “guidelines” do not represent new “guidance”, but an interpretation of existing guidance (DO-
178B) with respect to the use of particular OO features. The “rules” associated with these guidelines are also rules
only in the sense that they must be followed in order to adopt the given approach. Often there are also alternative
approaches that can be followed in order to address the same issues and still comply with DO-178B.

3.4.3 Overall approach
This section is intended to provide an approach for addressing DO-178B objectives when using OO features related
to multiple inheritance. In this regard, multiple inheritance is treated as an extension of single inheritance and, as a
result, all guidelines related to the use of single inheritance and dynamic dispatch also apply here. Issues related to
multiple inheritance are listed in volume 2.

Guidelines that attempt to resolve these issues appear in sections 3.4.5 through 3.4.8. Each of these sections should
be understood to provide one (of possibly many) approaches that assist in compliance to DO-178B objectives.

The overall collection of guidelines is open-ended. As a result, new approaches and new guidelines may be added
that address the same issues as existing approaches, under different circumstances.

A sharp distinction is drawn between the use of interface and implementation inheritance. The guidelines for
Multiple Interface Inheritance address the simpler case, in which we are concerned only with inherited operation
specifications (that do not reference one another).

The guidelines for Multiple Implementation Inheritance deal with the more difficult case involving the inheritance
of code and data. Although use of these guidelines helps us deal with the issues raised with respect to ambiguity and
complexity, delegation is still considered preferable to the use of multiple implementation inheritance for most
systems (as recommended by the AVSI Guide [21]).

3-28

Volume 3 DRAFT

The guidelines for the Combination of Distinct Abstractions provide an alternative to those for Multiple
Implementation Inheritance. They forbid the use of repeated inheritance in order to eliminate related sources of
ambiguity.

The guidelines for Mixed Multiple Inheritance address the case in which we have a mix of interface and
implementation inheritance.

3.4.4 Multiple Interface Inheritance
Multiple interface inheritance permits the categorization of entities in terms of their interfaces, where each entity
may appear in more than one category. These guidelines extend those for single inheritance and dynamic dispatch to
address multiple interface inheritance. When applying the Subtyping guidelines, this means that a subclass with
more than one superclass inherits the test cases defined by all its superclasses.

3.4.4.1 Motivation
In the real world, objects are often classified in more than one way. Multiple interface inheritance allows us to
model this without introducing redundancy (and without the complications associated with multiple implementation
inheritance).

3.4.4.2 Applicability
Multiple interface inheritance involves two or more superinterfaces, each of which contributes features (compile-
time constants and operations) to a single subinterface. Each super-interface may, in turn, itself inherit from other
interfaces, either singly or multiply. The resulting inheritance hierarchy forms a directed acyclic graph that permits
the definition of common ancestors, and the inheritance of the same feature along more than one path (repeated
inheritance). Features may also be redefined, potentially resulting in different definitions of the same feature along
different paths. Appendix B.2 illustrates the following issues with multiple interface inheritance:

• Repeated inheritance,
• Redefinition along separate paths,
• Independently defined operations with same signature

3.4.4.3 Guidelines
The guidelines in this section extend those for Inheritance with Overriding (section 3.3.4) to include the following
rules that addresses the three issues listed above:

1. Repeated interface inheritance rule:

When the same operation declaration is inherited by an interface via more than one path through the interface
hierarchy without redeclaration or renaming, this should result in a single operation in the subinterface.

2. Interface redefinition rule:

When a subinterface inherits different definitions of the same operation (as a result of redefinition along separate
paths), the definitions must be combined by explicitly defining an operation in the subinterface that follows the
Simple overriding rule (section 3.3.4.3) with respect to each parent interface.

3. Independent interface definition rule:

When more than one parent independently defines an operation with the same signature, the user must explicitly
decide whether they represent the same operation or whether this represents an error. Such decisions should be
recorded as explicit annotations to the source code. If the operations are not intended to be the same, one of them
should be renamed. If the operations are intended to be the same, any preconditions and postconditions should
also be the same.

3-29

Volume 3 DRAFT

4. Compile time constant rule:

All of the above rules apply to compile time constants as well as operations. Constants whose value involves run-
time computation should not be permitted in interfaces.

The rationale for the Repeated interface inheritance rule: is that cases involving the sharing of operations are
common while cases that demand replication are not (Appendix B.2). Sharing is also supported by many languages,
whereas replication is not. Therefore sharing is defined to be the normal, expected behavior and additional work is
needed to support replication in those rare cases in which it is required.

The Interface redefinition rule: is derived from the guidelines for behavioral subtyping [7] that inspired the Simple
overriding rule: (section 3.3.4.3). The user is required to define the operation representing the combination of the
inherited definitions in order to make its specification explicit even when the language does not require it. The intent
here is that clients of the sub-interface be able to directly see the result of combining the inherited definitions.

The Independent interface definition rule: requires the user to always explicitly decide when two independently
defined operations with the same signature are intended to represent the same operation and when they are not. The
intent here is to avoid errors resulting from the accidental matching of operation signatures.

The Compile time constant rule: specifies that compile time constants be treated in the same manner as operations
with respect to the previous cases. It applies only to constants with an initial value that can be computed at
compilation time. Constants whose value is computed at run-time require the generation of code to perform the
computation and assignment. This, in turn, conflicts with the fundamental definition of an interface, which is not
permitted to define either the code or the data.

Languages specific guidelines are provided in Appendix B.2. In general, it is only necessary to enforce (e.g., by
means of design and code inspections) those guidelines that the language does not enforce itself.

3.4.4.4 Related guidelines
The guidelines in this section are related to those for Subtyping.

3.4.5 Multiple Implementation Inheritance
Multiple implementation inheritance supports the construction of a class implementation in terms of the
implementations of other existing classes. These guidelines extend those for single inheritance and dynamic dispatch
to address multiple implementation inheritance. When applying the guidelines for Subtyping, this means that a
subclass with more than one superclass inherits the test cases defined by all its superclasses.

3.4.5.1 Motivation
Multiple implementation inheritance supports maximum reuse of code.

3.4.5.2 Applicability
A given class C is implemented by inheriting the methods and attributes of two or more superclasses S1, S2.

3.4.5.3 Guidelines
The guidelines in this section extend those for Inheritance with Overriding (section 3.3.4) to address the basic issues
raised by the multiple inheritance of code and data in a manner consistent with the multiple inheritance of interface
specifications:

3-30

Volume 3 DRAFT

1. Repeated implementation inheritance rule:

When the same feature (method or attribute) is inherited by a class via more than one path through the interface
hierarchy, this should result in a single feature in the subclass.

2. Implementation redefinition rule:

When a subclass inherits different definitions of the same method (as a result of redefinition along separate paths),
the definitions must be combined by explicitly defining a method in the subclass that follows the Simple overriding
rule: (section 3.3.4.3) with respect to each parent class.

3. Independent implementation definition rule:

When more than one parent independently defines a method with the same signature, the user must explicitly
decide whether they represent the same method or whether this represents an error. If they are intended to be
different, renaming should be used to distinguish them. Otherwise, the definitions must be combined by explicitly
defining a method in the subclass that follows the Simple overriding rule: (section 3.3.4.3) with respect to each
parent class.

As in the guidelines on Inheritance with Overriding, it is recommended that decisions related to the Independent
implementation definition rule: be recorded as explicit annotations to the source code.

Languages specific guidelines for C++ are provided in Appendix B.2. In general, it is only necessary to enforce (e.g.
by means of design and code inspections) those guidelines that the language does not enforce itself.

3.4.5.4 Related guidelines
The guidelines in this section are related to those for Subtyping.

3.4.6 Mixed Multiple Inheritance
Multiple inheritance may involve only interface specifications, may involve only implementations or may involve
some combination of these. The guidelines in this section address the issues associated with the combination of
interface and implementation inheritance (mixed multiple inheritance).

3.4.6.1 Motivation
Often we want to define a class that implements one of more interfaces while building on the implementation
provided by a second class. This can be accomplished in a number of ways. In situations where the resulting class is
logically a subtype of the other classes, inheritance is a natural choice. This typically works well as long as all the
superclasses are interfaces, save one.

In the more general case, involving an arbitrary combination of interfaces, abstract classes, and concrete classes, the
problems associated with multiple implementation inheritance may also arise.

3.4.6.2 Applicability
These guidelines apply when a class has at least one parent class that is an interface and at least one parent class that
is not.

3.4.6.3 Guidelines
Both the guidelines for Inheritance with Overriding and Multiple Interface Inheritance apply here. If more than one
superclass provides an implementation, the guidelines on Multiple Implementation Inheritance also apply.

Verification in accordance with the guidelines on Subtyping (section 3.3.6) is also recommended.

3-31

Volume 3 DRAFT

3.4.6.4 Related guidelines
The Top Heavy Hierarchy and Deep Hierarchy sections provide metrics to limit the complexity of the inheritance
hierarchy.

3.4.7 Combination of Distinct Abstractions
The guidelines in this section extend those for Multiple Implementation Inheritance by restricting the use of multiple
implementation inheritance to cases that do not involve repeated inheritance or the redefinition of competing
implementations along separate paths.

3.4.7.1 Motivation
The guidelines in this section are intended to maximize the reuse of code while complying with the associated
guidelines for Subtyping. Any use of multiple inheritance, however, can lead to ambiguities within the class
hierarchy. Three potential sources of ambiguity are identified in Appendix A: (1) repeated inheritance, (2)
redefinition along separate paths, and (3) independently defined operations with the same signature. The first two
are eliminated by the guidelines in this section, which require that superclasses always be distinct rather than
subclasses of a common superclass. As Meyer suggests, “This is the form that you will need most often in building
inheritance structures, …” [18, page 521].

3.4.7.2 Applicability
A given class is implemented by inheriting the features of two or more distinct superclasses. The superclasses are
considered distinct because they are not variants of a single abstraction [18, page 521] (have no common ancestors).
The following example illustrates the basic structure.

Plane

passenger_count() : int

Asset

purchase_price() : float

CompanyPlane

Figure 3.4-1 Combination of Distinct Abstractions

As described by Meyer [18, page 521], a class Plane describes the abstraction suggested by its name. Operations are
provided to query the passenger_count, altitude, position and speed of the airplane. Additional operations include
commands to take_off and set_speed. In a completely different domain, we have a class Asset that represents
something that a company owns. Our concerns here are related to accounting, the manner in which the asset is paid
for, its depreciation and sale. Operations associated with an asset include queries to determine its purchase_price
and resale_value, and the actions depreciate, resell, and pay_installment.

These classes are then combined by means of inheritance to create a new class CompanyPlane. Because each
superclass is taken from a different domain and because they have no common ancestors, the odds of inheriting two
independently defined operations with the same signature is small.

3-32

Volume 3 DRAFT

3.4.7.3 Guidelines
Although the guidelines in this section extend those for Multiple Implementation Inheritance, the restrictions on
inheritance structure eliminate ambiguities arising from repeated inheritance and redefinition along separate paths.
As a result, we do not need the repeated implementation inheritance rule or the implementation redefinition rule
defined by the guidelines for Multiple Implementation Inheritance.

Only the independent implementation definition rule from the guidelines on Multiple Implementation Inheritance is
required, to handle cases in which superclasses independently define operations with the same signature. Because
the superclasses are distinct, any ambiguity usually represents an error, and should result in a renaming of one of the
inherited operations in order to make them distinct.

We must also follow the rules associated with the guidelines on Inheritance with Overriding and Subtyping.

No diamond rule: Repeated inheritance is not permitted, i.e. no subclass may inherit from the same superclass via
more than one path.

Independent implementation definition rule: When more than one parent independently defines a method with the
same signature, the user must explicitly decide whether they represent the same method or whether this
represents an error. If they are intended to be different, renaming should be used to distinguish them. Otherwise,
the definitions must be combined by explicitly defining a method in the subclass that follows the Simple overriding
rule with respect to each parent class. (Identical to rule of same name in the section on Multiple Implementation
Inheritance)

3.4.7.4 Related guidelines
The guidelines in this section are related to those for Inheritance with Overriding and Subtyping.

3.4.8 Top Heavy Hierarchy
The guidelines in this section address issues of complex class hierarchies that contain many classes and inherited
features near the top (root) of the hierarchy. The intent is to reduce the number of opportunities for errors related to
composition of competing parent implementations.

3.4.8.1 Motivation
Most class hierarchies have a characteristic shape. They are generally narrow near their top (root) and broad near
their base, with a depth of between three and six. As a result the number of classes increases as a function of their
distance from the root and the number of inherited elements increases in small steps.

Problems can arise when class hierarchies fail to exhibit this shape. A class hierarchy with many classes near the
root, and with many features associated with these top-level classes can be difficult to understand and change. “Top-
heavy multiple inheritance and deep hierarchies are error-prone, even when they conform to good design practice.
The wrong variable type, variable, or method may be inherited, for example, due to confusion about a multiple
inheritance structure.” [11, p. 503, spaghetti inheritance]

3.4.8.2 Applicability
These guidelines apply when the complexity of the class hierarchy is a concern and there are too many classes near
its root. This is a particular concern when multiple inheritance is used and the number of features inherited from
each of these upper level classes is large.

3.4.8.3 Guidelines
The following rules define the basic approach:

Three parents rule: Any class near the top of the hierarchy with three or more parents warrants careful review.

3-33

Volume 3 DRAFT

Top heavy composition rule: Any class near the top of the hierarchy that inherits more than 20 features from each
of two or more parent classes warrants careful review.

Top to bottom rule: Any class hierarchy that contains more classes near the top of the hierarchy than near the
bottom warrants careful review.

A class is considered “near the top of the hierarchy” if it appears in one of the top two levels. A class is considered
“near the bottom of the hierarchy” if it appears in one of the bottom two levels. A class hierarchy that successfully
passes an inspection should be marked so as to avoid repeated review with respect to the same issue.

3.4.8.4 Related guidelines
Related guidelines include those for Inheritance with Overriding, Multiple Interface Inheritance, and Multiple
Implementation Inheritance.

3-34

Volume 3 DRAFT

3.5 Templates

3.5.1 Purpose
Templates and the guidelines on Templates in this section are not unique to OOT. This section addresses issues
raised and considered regarding DO-178B guidelines for development and verification when using templates in an
object-oriented technology (OOT) environment.

3.5.2 Background
Templates provide a means of abstracting common structural and behavioral aspects of a family of classes or
operations in a domain independent way. Template is the UML term for a parameterized model element with
unbound (formal) parameters that must be bound to actual parameters before it can be instantiated.

At a target language level, templates correspond to Ada generics and to C++ templates. A template is a
parameterized code replication feature that provides stronger typing than macros. Templates provide for reusability
in programming languages. Consider a Stack with a generically parameterized base type. This allows a single Stack
class to provide many class instantiations such as a Stack of integers, a Stack of any fundamental or user defined
type, or even a Stack of Stacks.

A template’s behavior results from its implementation, the values of the arguments used to instantiate the template,
and the behavior of any types specified to it as arguments. The use of templates directly impacts: source code
reviews, coding standards, requirements-based test case and procedure development and review, timing analysis,
memory usage, requirements-based test coverage, source code to object code traceability, and structural coverage,
including data coupling analysis and control coupling analysis. Dead code and deactivated code may also be a
concern because unused functionality of a template may be considered either dead or deactivated code.

3.5.3 Source Code Review

3.5.3.1 Motivation
The use of templates can affect source code reviews. Depending on the parameter types and the scope of the call, a
different instantiation of the template may be invoked by the compiler. Each instantiation may use different sub-
components and features of the template. The template may contain features that are not used at all by a specific
application.

3.5.3.2 Related DO-178B Sections and Objectives
The following DO-178B objectives for verification and coding standards are relevant to the recommendations in
section 3.5.3.3 for using templates: Table A-1 objective 5, Table A-5 objectives 1 and 3, and Table A-9 objective 1.

3.5.3.3 Guidelines
Standards need to address the issues identified in this section. The source code developer and code reviewer should
be aware of the implications and potential effects of using templates. A template must be reviewed with respect to
the actual parameters to determine if the source code is verifiable. Consequently, the following practices are
recommended:

• It may be necessary for types to be defined in low level requirements to facilitate test coverage.
• Coding standards should require templates to document all the assumptions about types to be used with that

template.
• Coding standards should be established to ensure the specific features of each template are understood, to ensure

that they are the correct features for the instance, and that they comply with low level requirements.

3-35

Volume 3 DRAFT

• Coding standards should be established to determine which features of a template, if any, are not used by the
application. Unused features may be considered dead or deactivated code.

• Each template should be reviewed with respect to the actual parameters.

3.5.4 Requirements-based Test Development, Review, and Coverage

3.5.4.1 Motivation
Templates are instantiated by substituting zero or more specific arguments for each formal parameter defined in the
template class or operation. Test cases and procedures are developed based on the software high-level, low-level,
and derived requirements. Consequently, test developers and reviewers may not be aware whether a template
contains additional functionality, and may not be aware of or have visibility into all the functionality contained
within a specific function that is instantiated by a template call. In general, requirements-based test cases and
procedures may not test all functionality of the template, especially those functions which are not instantiated for a
particular template. All instantiations should be tested to guarantee that the template functions as intended [23][11].

3.5.4.2 Related DO-178B Sections and Objectives
See DO-178B section 6.4.4.3d, Table A-6: objectives 1-4, and Table A-7: objectives 1-4 regarding verification and
integration processes.

3.5.4.3 Guidelines
Each instance of a template with a unique set of arguments should be tested for software at Levels A, B, and C. It is
theoretically possible to test the template for all known instances if the types map to the same underlying
representation and object code can be shown to be equivalent. In practice, the complexity of the instantiation
process makes it difficult to verify all instances of a template without testing each instance individually [23]. It also
complicates the requirements to test coverage traceability, as many tests may need to be executed to cover all
possible instantiations that do not trace to specific requirement of the application. Also, the developer may need to
provide protection that ensures that the unused functionality of the template (deactivated code) cannot be
inadvertently activated. Therefore, while templates may lead to coding efficiencies, the use of templates may
actually substantially increase the amount of requirements-based test development, review, and coverage needed.

3.5.5 Structural Coverage for Templates

3.5.5.1 Nested Templates
Nested templates and using templates with other language constructs increases the complexity of the code. For
example, child packages in Ada and friend classes in C++ can result in complex code. Although complex code is not
prohibited by DO-178B, complexity can make structural coverage analysis more difficult.

3.5.5.1.1 Related DO-178B Sections and Objectives
The following DO-178B sections and objectives for integration and test coverage are relevant to recommendations
in section 3.3.1.2 for using templates: DO-178B section 6.4.4.2, Table A-6: objectives 1-4 and Table A-7: objectives
5-7.

3.5.5.1.2 Guidelines
In general, Templates should be analyzed for complexity and complex Templates should be avoided. Nested
Templates and Templates used with other language constructs should be analyzed for complexity and justified.

3-36

Volume 3 DRAFT

3.5.5.2 Templates and Object Code Traceability
Templates can be compiled using "code sharing" or "macro-expansion". Code sharing is highly parametric, with
small changes in actual parameters resulting in dramatic differences in object code. Object code coverage is difficult
and mappings from a template to object code can be complex when the compiler uses the "code sharing" approach.

3.5.5.2.1 Related DO-178B Sections and Objectives
The following DO-178B sections and objectives for structural coverage are relevant to the recommendation in
section 3.3.2.2 for using templates: DO-178B section 6.4.4.2 and Table A-7: objectives 5-7.

3.5.5.2.2 Guidelines
Code sharing is not widely used. In general, code sharing should be avoided.

3.5.5.3 Data and Control Coupling Analysis
Use of templates can complicate data coupling analysis and control coupling analysis by not allowing visibility into
the template for the analyst to verify that the correct template functionality is invoked for each instantiation (control
coupling) based on the parameters (data coupling).

3.5.5.3.1 Related DO-178B Sections and Objectives
DO-178B section 6.4.4.3 c and Table A-7 objective 8 on data and control coupling are relevant.

3.5.5.3.2 Guidelines
Data and control coupling associated with templates should be evaluated with respect to the actual parameters.

3-37

Volume 3 DRAFT

3.6 Inlining

3.6.1 Purpose
Inlining and the guidelines on Inlining in this section are not unique to OOT. This section addresses issues raised
and considered regarding DO-178B guidelines for development and verification when Inlining in an object-oriented
technology (OOT) environment.

3.6.2 Background
When a compiler chooses to Inline, a method body is compiled without the call overhead (i.e., the Inlined method
body’s object code is physically placed in the calling method’s object code). This is in contrast to the “usual”
implementation of making a call (and potential context switch) during execution to a separate method with the
associated parameters, if any being passed to the called method. If the compiler chooses not to Inline, a call to the
method is inserted in the caller’s object code, and the called method’s object code remains separate. The Inlining of
methods eliminates the overhead associated with a call, and is thus useful for optimization of performance. This
performance optimization results in a space penalty, unless the Inlined method is shorter than the sequence of
instructions used to make the call. Simple get and set methods, for example, are commonly used in object-oriented
software and can sometimes be smaller than the calling sequence.

When Inlining, it is important to know if the compiler will honor or ignore the inline request, whether the code has
been Inlined or not, and what the impact is to the code.

The following analyses are directly impacted by Inlining: memory and stack usage analyses, timing (performance)
analysis, structural coverage analysis, and source code to object code traceability.

Inlining may affect a number of verification methods as noted below. The use of Inlining, however, is not an
obstacle to certification so long as its effects are understood and documented, and each effect upon each of these
verification methods is addressed

3.6.3 Inlining and Structural Coverage
Some language constructs in combination with Inlining can impact structural coverage analyses, including data and
control coupling and source to object code traceability analysis.

3.6.3.1 Related DO-178B Sections and Objectives
The following DO-178B sections and objectives for structural coverage and data and control coupling are relevant to
the recommendations in section 3.6.3.2 for Inlining: Section 6.4.4.2 and Table A-7 objectives 5 through 8.

3.6.3.2 Guidelines
Table A-7, objectives 5-8: In general, Inlining should consist of a simple expression only, which is almost always
one line of code. Virtual methods and methods that access other class methods should not be Inlined.

Table A-7, objectives 5-7: Inline expansion may be handled differently at different points of expansion in order to
optimize the code for the caller’s context. The structural coverage of the Inlined method should be evaluated at the
point of each expansion. If object code is removed or object code is added, as determined by the source to object
code trace for Level A software, then structural coverage must be verified separately for each expansion.

Table A-7, objective 8: Inline expansion can eliminate parameter passing, which can affect the amount of
information pushed on the stack as well as the total amount of code generated. This, in turn, can affect the stack
usage and timing analysis. In addition, data coupling and control coupling relationships can transfer from the Inlined
component to the Inlining component. For data coupling and control coupling, the verification approach should
address the Inlining of code including worst-case memory usage analysis, stack usage analysis, timing analysis, call
tree analysis, and data set/use analysis.

3-38

Volume 3 DRAFT

3.6.4 Source Code Reviewof Inlined Code
Inlining can complicate source code reviews. Both the code developer and the source code reviewers must be aware
of the implications and potential effects of Inlining. When an Inlined method is expanded in the context of the caller
it may be possible for the compiler to simplify it in a number of ways, involving both space and speed. Compiler
optimizations include directly referencing arguments and unrolling loops with known bounds as common examples.
This is generally only a problem when an Inlined method is relatively complex and is optimized based on the
context of the caller.

3.6.4.1 Related DO-178B Sections and Objectives
The following DO-178B objectives for verification are relevant to the recommendations in section 3.6.4.2 for
Inlining: Table A-5 objectives 1and 3.

3.6.4.2 Guidelines
Table A-5, objective 1: Review of the Inlined method against the low-level requirements is sufficient to verify the
behavior of all expansions.

Table A-5, objective 3: Review of the Inlined method against the low-level requirements is sufficient to verify the
behavior of all expansions.

3-39

Volume 3 DRAFT

3.7 Type Conversion

3.7.1 Purpose
Type Conversion and the guidelines on Type Conversion in this section are not unique to OOT. This section
addresses issues raised and considered regarding DO-178B guidelines for verification and coding standards when
types are converted in strongly typed languages, including when it is appropriate to convert types implicitly and
when type conversion should be explicit. These “guidelines” do not represent new “guidance”, but an interpretation
of existing guidance (DO-178B) with respect to Type Conversion for object-oriented (OO) languages that provide
for strong typing with abstraction. Guidelines are in the form of recommended practices which support compliance
with DO-178B objectives. An analysis should be conducted to examine the effects of type conversion for all
languages as a part of satisfying the DO-178B verification objectives. Languages that are not strongly typed are not
within the scope of this document. Examples of strongly typed languages include Ada, C++ and Java. Dynamic
dispatch, which uses a form of implicit type conversion, is discussed in a separate chapter in this document.

3.7.2 Background
Strongly typed languages are an improvement over languages that are not strongly typed because they provide
additional control of type conversion. User-defined type conversions are easier to identify and understand. Type
Conversion may be implicit or explicit and may be checked (to determine if the type conversion results are valid and
correct) or unchecked. With implicit type conversion, the compiler is given the responsibility for determining that a
conversion is required and how to perform the conversion. With explicit type conversion, the programmer assumes
the responsibilities. Checked types can be checked at compile time (producing a compilation error for an invalid
conversion) or at run time (usually resulting in a run-time error). Conversion can result in loss of data. Unchecked
type conversions need to be verified by test to ensure conversion was correct.

The following are directly impacted by implicit type conversion: potential loss of data or precision, performance and
timing analysis, requirements-based test development, review and execution results, structural coverage analysis,
data flow and control flow analyses, and source code to object code traceability.

3.7.3 Overall approach
Implicit type conversion raises certification issues related to the ability to perform various forms of analyses and to
satisfy the verification objectives of DO-178B, including requirements-based testing and structural
coverage analysis. Explicit type conversions can cause implicit loops and implicit conditionals. The use of explicitly
checked type conversions are regarded as acceptable so long as they are properly verified and do not inhibit other
verification methods, such as guaranteeing no loss of information and no unacceptable loss of data accuracy or
precision.

3.7.4 Source Code Review, Checklist, and Coding Standards
Type conversions that are not checked by the language, either at compile time or at run time, can potentially result in
code that has unintended behavior.

3.7.4.1 Related DO-178B Sections and Objectives
For object code traceability, source code review, checklist, and coding standards, see DO-178B Table A-1: objective
5, Table A-5: objectives 1,3,4, and 6, Table A-6: objectives 1-4, Table A-7: objectives 3 and 4, and Table A-9:
objective 1.

3.7.4.2 Guidelines
Unchecked type conversions are error prone and should be addressed specifically in coding standards and during
verification. Coding standards may address unchecked type conversions, as in the following recommended practice:

3-40

Volume 3 DRAFT

Conversion rule: To help ensure intended function and verification, all checked and unchecked conversions should
be justified or should be explicit, use the most restrictive conversion available, be conspicuously marked
(identified) in the program source code, and be permitted only after thorough review and analysis of potential
adverse effects.

Verification of unchecked type conversions may be accomplished through code reviews, checklists, or analysis (e.g.,
static code checking), and testing.

3.7.5 Loss of Precision in Type Conversions
Conversions, both implicit and explicit, that result in loss of data, data accuracy, or precision result in code that may
be incorrect. The following type conversions, for example, may result in loss of data or precision in some languages:

• from integer types to the floating point types
• from a floating point type to an integer type
• from a more precise numeric type to a less precise version of the same numeric type; e.g. long to short, double to

float, etc.

Loss of data, data accuracy, or precision can be especially difficult to analyze and detect for implicit
conversions and can be language dependent.

3.7.5.1 Related DO-178B Sections and Objectives
For source code review, checklist, coding standards, and data coupling analysis, see DO-178B Table A-5: objectives
1, 3, 4 and 6; Table A-6: objectives 1-4; and Table A-7: objective 8.

3.7.5.2 Guidelines
Type conversions should be addressed for loss of data, data accuracy, or precision. This may be accomplished
through coding standards and through verification including code reviews, checklists, or analysis. Coding standards
may address type conversions that can result in loss of data, data accuracy, or precision, as in the following
recommended practice:

Loss of information rule: To help ensure correctness, any conversions that may result in loss of data or data
accuracy and precision should be justified or should:

- be explicit,

- use the most restrictive conversion available,

- be conspicuously marked (identified) in the program source code, and only be permitted after thorough review
and analysis of potential adverse effects.

A clear understanding of the programming language being used is needed to identify and analyze implicit type
conversions for potential loss of information.

3.7.6 Type Conversions of References and Pointers
Some references and pointers can be implicitly converted. Converting a reference from one type to a dissimilar type
can result in code that has unintended behavior and is difficult to verify.

3.7.6.1 Related DO-178B Sections and Objectives
For source code review, checklist, and coding standards, see DO-178B Table A-5: objectives 1, 3, 4 and 6; and
Table A-6: objectives 1-4.

3-41

Volume 3 DRAFT

3.7.6.2 Guidelines
The following recommended practice may address implicitly converted references and pointers that result in code
with unintended behavior:

Supertype rule: To help ensure intended function and verification, all implicit type conversions involving
references/pointers to class instances should be justified or should only represent a conversion from a subtype to
one of its supertypes.

3.7.7 Language specific guidelines
As a result of the proposed solutions, the following language best practices should be taken into consideration
[Source code review, checklist, coding standards]:

1. All implicit conversions should be checked for potential loss of precision or loss of data. Specifically, the
following should be justified:

· From integer types to the floating point types (potential loss of precision) (JAVA and C++)

· From a floating point type to an integer type (potential loss of data) (C++)

· From a more precise numeric type to a less precise version of the same numeric type; e.g. long to short, double
to float, etc. (potential loss of data or precision) (C++)

2. Implicit conversions between logically unrelated types should be justified. Types are logically unrelated when
one does not define a set of operations that is a subset of the other. For example, in C++ single argument
constructors, such as a stack class taking a single integer argument, would allow implicit conversion. It is a good
programming practice to use the keyword “explicit” to avoid implicit conversion between logically unrelated
types. Unless the single argument constructor was created with the expressed purpose of permitting implicit
conversion between the argument type and the class type, the constructor should be declared with the explicit
keyword. Not using the explicit keyword should be justified.

3-42

Volume 3 DRAFT

3.8 Overloading and Method Resolution

3.8.1 Purpose
Overloading and the guidelines on Overloading in this section are not unique to OOT. This section addresses issues
raised and considered regarding DO-178B guidelines when overloading is used. Guidelines are in the form of
recommended practices which support compliance with DO-178B objectives. These “guidelines” do not represent
new “guidance”, but an interpretation of existing guidance (DO-178B) with respect to overloading and method
resolution.

3.8.2 Background
Overloading means: using the same name for different operators or behavioral features (operations or methods)
visible within the same scope. Overloading is a simple but useful form of static polymorphism when used
consistently. Conversely, too much overloading and improper use of overloading can make source code readability
more difficult, and can thus contribute to human error.

Overloading can enhance readability when the overloaded operators, operations or methods are semantically
consistent. However, overloaded operators, operations, and methods could coincidentally have the same name and
potentially have very different semantic behaviors. Specifically, overloading can be confusing when it introduces
methods that have the same name but different semantics. This may be further complicated when overloading is
combined with other language features (e.g., overriding, templates, etc.). Overloading can also complicate matters
for tool use (e.g., structural coverage and control flow analysis tools) if the overloading rules for the language are
overly complex.

Overloading may affect a number of verification methods as noted below. The use of overloading is not an obstacle
to certification so long as it is verified that the intended operation is, in fact, the operation called.

3.8.3 Code Review Method
Overloaded methods and operators can introduce unintended functionality. Overloading special language constructs,
such as indexing or dereferencing, can make verification difficult. Overloading methods and operators
inconsistently can result in ambiguous code.

3.8.3.1 Related DO-178B Sections and Objectives
Overloading can potentially result in code that is overly complex and difficult to verify. See DO-178B [1] Table A-
5: objectives 3-4 related to verifiability of source code and conformance to standards.

3.8.3.2 Guidelines
Overloaded methods and operators should be addressed for inconsistencies which can lead to code complexity and
ambiguities. Overloading special language features should be discouraged or justified. This may be accomplished
through code reviews, checklists, or coding standards. Software code standards should include complexity
restrictions that address overloading. For example, the following practices are recommended:

Overloaded method rule: Overloaded operations or methods should form "families" that use the same semantics,
share the same name, have the same purpose, and that are differentiated by the types of their formal parameters.

Overloaded operator rule: Overloaded operators should obey the "natural" meaning and follow conventions of the
language. For example, a C++ operator "+=" should have the same meaning as "+" and "=". Arithmetic operators
should be overloaded using conventional notation whenever possible.

Overloading in general: When calls are overloaded, reviewers should know exactly what is being called.
Overloading of special language constructs must be justified.

3-43

Volume 3 DRAFT

In performing code reviews, the pre- and post- conditions for overloaded methods should be examined for consistent
behavior in the context of the code under review.

3.8.4 Implicit Conversion
Object-oriented languages support varying levels of implicit conversion of arguments. That is, arguments can be
implicitly converted to match the arguments of a method with the appropriate signature. The use of overloaded
operators and methods with arguments that are implicitly convertible can potentially result in problems associating
calls with methods that do not share the same structure of preconditions and postconditions.

3.8.4.1 Related DO-178B Sections and Objectives
Overloading can impact structural coverage analysis and data and control flow analysis. Overloading can also inhibit
source to object code traceability. See DO-178B [1] Table A-7: objectives 5-8 related to test coverage.

3.8.4.2 Guidelines
To avoid potential problems involving the association of calls with methods, it is recommended that any family of
overloaded operators and methods whose arguments (signatures) are implicitly convertible to one another or from
one to another be required to have the same semantics. Formally, this means they must have the same structure of
preconditions and postconditions. Informally, this means that they may share the same structure of test cases.

The software user of any family of overloaded operators and methods whose arguments (signatures) are implicitly
convertible should: (1) perform the call using arguments that do not need to be converted and (2) perform analysis
appropriate to the level of the software to ensure the proper method is being called.

3-44

Volume 3 DRAFT

3.9 Dead and Deactivated Code, and Reuse

3.9.1 Purpose
This section identifies issues, perspectives, and recommendations for addressing concerns associated with software
reuse, deactivated code, and dead code contained in aviation software applications as a result of using object-
oriented technology (OOT) development processes, environments, and tool libraries. This section provides
clarification for certain sections of DO-178B and contains no new or additional guidance material.

3.9.2 Background
A major objective of OOT is to provide developers with the ability to create new software systems utilizing reusable
software components where a component may be comprised of classes, methods, procedures, packages, modules,
and so on. A reusable component often contains more software functionality than required by the system being
certified. The requirements and design of the reusable component should be more generic and cover more situations
if the component is truly reusable. If this extra functionality results in extra code in the system itself, then there may
be deactivated code with which to deal. Deactivated code will likely be present in any application that uses general
purpose software components and libraries, such as commercial off-the-shelf (COTS) software libraries provided
with a compiler, operating system or run-time environment, for object-oriented development frameworks.

Particular areas of concern for deactivated code when utilizing object-oriented (OO) techniques include:

• Compiler generated default methods (e.g., default constructors, destructors, and assignment operators)
• Completely unused classes
• Unused methods within classes
• Unused operations within overloaded methods
• Overridden methods due to use of sub-classes
• Existence of unexecuted paths because the entry conditions for those paths are never satisfied for a given

system
• Unused class attributes
• Unintended functionality or anomalous behavior

RTCA documents DO-178B [1] and DO-248B [2] provide guidance for reuse and modification of Previously
Developed Software (PDS), deactivated code, and dead code. FAA Order 8110.49 [24] and AC 20-RSC [34] also
provide additional guidance for the use of reusable software components including life cycle data. PDS is included
in this discussion as it is one form of a reusable component. DO-178B guidance for upgrading software from a
previous development (such as DO-178A) still applies.

OO components taken from the non-avionics or non-commercial avionics industries and reused may have been
designed to be highly reusable, but quite often not all of the necessary software life cycle data is available. Again,
normal guidance from DO-178B applies in these situations. Generally, the product and process assurance artifacts
must be produced as part of a first software approval.

While DO-178B already provides guidance for deactivated and dead code, significantly more software component
reuse is expected through OOT. The following subsections provide elaboration of issues which may become more
pervasive as more and more software components are reused through the application of OOT. The issues for reuse,
dead code, and deactivated code are addressed in the following subsections. References to existing DO-178B
guidance are provided, as appropriate.

3.9.3 Reuse of Software Components
Reuse of software components may occur in three general ways. One way is through the use of “generic” or non-
application specific software components. Another approach, perhaps within the same system, is through the
creation of multiple, option-selectable, “custom” or application specific components that implement variants of the

3-45

Volume 3 DRAFT

same algorithms. Finally, application specific components may be reused from one system in another similar but not
identical system.

Common examples of non-application specific reusable components are operating systems, standard libraries, math
libraries and so on. Often these reusable components are developed by a third party to be highly reusable. The
components may or may not be written using OOT; this detail may be hidden to the application developer. These
non-application specific components may be provided as object libraries, which are linked into the system or
alternatively may be provided as source libraries in the form of an OO framework.

An example of reusable, option-selectable, application specific software components would be two slightly different
flight control algorithms which correspond to two different airframes. In this case, some of the classes are active in
one installation and deactivated in another.

Application specific reuse occurs frequently and is generally desirable. However, unintended functionality may
result. In one well-publicized case an inertial reference system was reused from one series of launch vehicle to
another. Unfortunately the reused software was not modified to consider a different launch profile used by the latter
series of launch vehicles. This oversight resulted in the destruction of a launch vehicle early in the launch process.

Two of the previously noted approaches will likely result in some unused functionality as well as deactivated code.
All of the approaches could potentially lead to unintended functionality. In all cases the software and the supporting
software life cycle data must satisfy the objectives of DO-178B.

3.9.3.1 Related DO-178B Sections and Objectives
See DO-178B sections 2.4e, 4.2h, 5.4.3a&b, 11.1g, 11.10k, 12.1, 12.1.1, 12.1.2, 12.1.3, 12.1.4, 12.1.5, and 12.1.6.
Additional clarification is contained in DO-248B sections 3.8 and 3.70. Also refer to AC 20-RSC [34] and FAA
Order 8110.49 [24].

3.9.3.2 Guidelines
For standard libraries, the applicant needs to identify which Application Programming Interfaces (API) of the library
are used and unused. For option-selectable software, the applicant needs to identify which classes and methods
within classes are used and unused for particular installations.

The use of individual subclasses, each of which represents a different option, is a good way to implement option
selectable software. Only the appropriate sub-class is actually created in the system. The caller of the desired
algorithm need not know which algorithm is actually in the system – it is hidden from the other parts of the program.

Deactivated code for both forms of reusable components should conform to the Developer’s intent rule and the All
code verified rule. In both cases unused interfaces, classes, and methods will be tied to either derived requirements
or explicit, option-selectable requirements specified by the integrator. The derived requirements must be verified
and driven into the System Safety Assessment (SSA) for consideration by the integrator. One acceptable means to
identify unused functionality to the integrator would be through the use of traceability matrices. Verification data for
derived requirements must satisfy the objectives of DO-178B. In addition, if the deactivated classes and methods are
built into the executable object code for the various installation options, analysis should be performed to show that
the deactivated code in a particular installation cannot be activated.

Developer’s intent rule: All code must be exercised by requirements-based tests (the requirements may be
derived). Code not associated with requirements should be carefully evaluated and either removed (if it is dead
code) or requirements should be developed for the code. Code which exists due to derived requirements needs to
be explicitly identified by the developer and the associated requirements must be noted as “derived” for inclusion in
the SSA process by the integrator.

All code verified rule: All code executed within any aircraft or engine configuration must be verified per applicable
DO-178B objectives, even if it can be demonstrated that a particular piece of code can never be activated in a
specific system. Note that requirements will be needed for all deactivated code associated with the various aircraft
or engine configurations (either derived requirements or explicit, option-selectable requirements specified by the
integrator).

3-46

Volume 3 DRAFT

Reused components must be associated with requirements for the new system. The level of reuse may vary and
include reused requirements data, reused code, and some reused of verification data. However the reused data must
still satisfy the Developer’s intent rule and be consistent with the SSA. Objective evidence must exist to demonstrate
all reused data satisfies the objectives of DO-178B.

3.9.4 Requirements Traceability
Traceability can be challenging when utilizing OO techniques. Of particular issue is how dead code, deactivated
code and active code can be differentiated and verified in OO software. Given a method that is not used, or a method
of an abstract class that is overridden in all subclasses, or an attribute that is never referenced, it may not be clear if
this was intentional for possible future use, an accident, or an error. That is, in terms of source code the developer’s
original intent may not be clear. It should be noted that additional traceability concerns are documented in Section
3.11 of this handbook. This subsection just focuses on traceability as it relates to reuse, dead code, and deactivated
code.

3.9.4.1 Related DO-178B Sections and Objectives
See DO-178B sections 5.4.3a&b, 5.5, 6.3.1a, 6.3.2a, 6.3.4e, 6.4.3, 6.4.4.1, 6.4.4.2, and 6.4.4.3. Also refer to DO-
248B sections 3.8, 3.28 and 3.70.

3.9.4.2 Guidelines
Requirements should be developed to a sufficiently low level of detail so that the traceability between requirements
and corresponding classes, methods and operators is clear. Tools to support OO software design and assist with
traceability relationships are highly recommended.

An applicant must demonstrate that an adequate process is in place to resolve dead code issues. A careful evaluation
of apparently dead code is needed to ensure that code that appears dead is actually dead and that it is not just a
documentation omission that makes it appear to be dead code. The Developer’s intent rule, as discussed in section
3.9.3.2, should provide the documentation to make this task much easier. The process also needs to cover overriding
of class methods including compiler generated default methods, operators, virtual functions or other OO-specific
instances where confusion might arise due to the OO structure of the code.

The following points should be observed when dealing with deactivated code:

• Deactivated code which is intended to operate in any configuration used within an aircraft or engine requires
associated explicit option-selectable requirements specified by the integrator or derived requirements created by
the developer.

• The design and architecture life cycle data will need to account for deactivated methods and attributes.

• The documented traceability relationships should exist from the source code to either derived or explicit
requirements (deactivated code will have associated requirements – dead code will exist due to a design error
and there will be no associated requirements).

• The completeness of requirements based tests against structural coverage objectives (derived requirements must
be verified and will have associated source code – dead code will exist due to a design error and there will be no
associated requirements).

• The effect of derived requirements on the SSA process and an examination of unintended functionality which
could be introduced by the derived requirements (derived requirements must be provided to the SSA process).

• Runtime examination of methods invoked when the software component is integrated into the final target
environment (control and data coupling/flow coverage are part of the DO-178B objectives – reusable software
component interfaces will need to be examined by the integrator).

Note that many OO languages provide features that if fully utilized will make the above activities much more
difficult – e.g., multiple inheritance. Developers may find it useful to develop standards which create a deterministic,
verifiable subset of a given OO language.

3-47

Volume 3 DRAFT

In the case of Level A software, object code not directly traceable to the source code will also be of concern as noted
in DO-178B in 6.4.4.2, item b. Examples of non-traceable, compiler generated object code could include default
constructors, default destructors, default copy methods, and default assignment methods. The developer should
provide explicit guidelines in terms of utilization of default methods and the appropriate verification techniques in
the planning and standards documents.

See Appendix B.3.1 for an example of deactivated code with both deactivated methods and attributes.

3.9.5 Certification Credit for Reused but Modified Class Hierarchy
When a previously approved class hierarchy is updated, it can be unclear how much re-verification must be
performed. Current guidance requires that a software change impact analysis must be performed to determine the
extent of required re-verification activities. The situation is no different for OOT. See Appendix B.3.2 for an
example of how this class hierarchy change can have a subtle effect without any obvious changes to code.

3.9.5.1 Related DO-178B Sections and Objectives
See DO-178B [1], sections 11.3h and 12.1. Also, refer to FAA Order 8110.49[24].

3.9.5.2 Guidelines
This issue applies to a certification when class hierarchies are not being completely re-tested. In this case, applicants
must provide a regression analysis of all changes to a class hierarchy in the form of flattened class hierarchy. More
succinctly, the applicant should adhere to the following rule:

Flattened class re-verification rule: When a change to an element of a class occurs, re-verification of all
subclasses whose flattened form contains the changed element is recommended.

A clear trace of the subclasses that are affected by changes in base classes could be created either manually or with
tools.

If full re-testing is performed, an alternative (and recommended) approach is to apply the guidelines described for
the Inherited test case rule (section 3.3.8.3). This states that “every test case appearing in the set of test cases
associated with a class should appear in the set of test cases associated with each of its subclasses.” This conforms to
the Liskov Substitution Principle [7] and will ensure the behaviors of the inherited methods are appropriate for each
subclass.

3.9.6 Changes in the Status of Deactivated Code Versus Actively Used Code

3.9.6.1 Related DO-178B Sections and Objectives
See DO-178B [1, sections 5.4.3a, 6.4.4.2c, 11.1g, 11.10k, 12.1.2a, and 12.1.3e]. Also, refer to AC 20-RSC [34].

3.9.6.2 Guidelines
When previously developed software is submitted by an applicant for a new certification, changes in the status of
deactivated code versus actively used code must be documented. Since the reusable components should follow the
All code verified rule as previously discussed, the components should have already have been verified to obtain
regulatory approval. However, in order to gain regulatory approval for the previously deactivated code, the
integrator will need to document and verify the interfaces associated with the newly activated code. This may drive
requirements, design, code, and verification changes from the previously approved baseline.

3-48

Volume 3 DRAFT

3.9.7 Service History Credit and Deactivated Code
Software verification data has the potential to be valid for a particular certification basis and installation but not
valid for different certification basis and installation. Often, applicants may apply for service history credit rather
than re-doing the artifacts to comply with the certification basis.

For example, assume an entire class hierarchy is developed and approved under DO-178B. A portion of this class
hierarchy is approved in a certified system and has 10 years of service history. Ten years later, a new system is
developed and potentially the regulatory guidance or certification basis has changed and it is now desired to use
portions of the previously unused class hierarchy. It is not clear that one can use service history at this point or the
old certification as a baseline, because of the activation of previously inactive code.

3.9.7.1 Related DO-178B Sections and Objectives
See DO-178B [1, section 12.3.5]. Also, refer to DO-248B [2, 3.19 and 4.4].

3.9.7.2 Guidelines
Service history credit may be granted for deactivation mechanisms with appropriate service history data.

The applicant should adhere to the following rule:

Service history rule: Service history credit may only be given for activated code and deactivation mechanisms that
have been actually executed. The target environment, certification basis, and SSA will need to be considered in
this process.

Integrators and regulators need to be aware that deactivated code in a previous certification basis could easily
become active in a newer certification effort (previously identified derived requirements for deactivated code that
were provided for the earlier SSA process can assist this activity). Integrators and regulators need to review the
documentation for code that has now become active and ensure that at least for that particular code, proper
certification artifacts and life cycle data for the appropriate (new) standard as well as potentially new hazards within
the system have been addressed. Code that becomes deactivated in a later certification is fine to leave in the code, as
long as it is documented per volume 2 of this document. Note that DO-248B [2, section 4.4] addresses this issue.

3-49

Volume 3 DRAFT

3.10 Object-Oriented Tools

3.10.1 Purpose
This section addresses issues impacting compliance with DO-178B objectives for traceability, configuration
management, development, verification, structural coverage analysis (including data coupling and control coupling
analyses), dead code, and deactivated code when object-oriented development and verification tools are used.
Additionally, tool issues related to dynamic dispatch, polymorphism, inheritance, frameworks and automatic code
generation will be discussed. Tool qualification with regard to object-oriented technology (OOT) will also be
discussed. As with most of the sections in this handbook, UML terminology and examples are used, since UML is
the predominant OO modeling language currently being considered by the aviation community, and other modeling
languages present similar issues.

3.10.2 Background
Current object-oriented (OO) tools (either internally developed or commercially procured) may not fully satisfy DO-
178B objectives with regard to configuration management, development, and verification. This section provides
guidelines for object-oriented tools to assist applicants in satisfying DO-178B objectives. OO may present new
challenges to OO tool vendors and applicants that have not been prevalent with structure-based development. The
specific OO tool issues and guidelines are presented in the following sections; however, the more general concerns
are:

1. Addressing verification coverage for OO software,

2. Using OO frameworks, automatic code generators, dynamic dispatch, polymorphism, and inheritance, and

3. Addressing requirements management and traceability during OO development.

3.10.3 Traceability When Using OO Tools
Specific traceability issues and guidelines are addressed in sections 3.11.4 and 3.11.6 of this handbook. OO tools
should implement the best practices as defined in those traceability sections and recommended guidelines for
addressing those issues.

3.10.4 Configuration Management When Using Visual Modeling Tools
When using OO tools to develop software requirements, design and implementation, it is beneficial to work at the
visual model level, especially when using UML. When working with OO tools, configuration management might be
done at the modeling level (i.e., diagrams). This may cause a concern when the OO tools can introduce subtle errors
into the diagrams. Since the model contains the software requirements and design, there must be some checks or
assurance that the raw data files (model files) are not changed by the tool when saving, opening, checking files into
the Configuration Management (CM) system or checking files out of the CM system. Some of the OO tools may
introduce errors at the modeling level when opening, saving, or closing files. If the output of the tools is used by a
subsequesnt process or configuration item, they may require special attention to establish determinism.

3.10.4.1 Related DO-178B Sections and Objectives
See DO-178B [1, Section 7] on the software configuration management process and objectives. Files that are part of
the software “type design” (See [1], Section 9.4) should be controlled to Control Category 1 (CC1) criteria ([1],
Section 7.3 and Table 7-1, and Annex A, Table A-2). It is likely that the visual models and charts and their
corresponding files should be controlled to CC1, as they represent the Software Requirements Data ([1, Section
11.9]) and the software Design Description ([1], Section 11.10). Guidance for tool qualification is in [1, Section
12.2].

3-50

Volume 3 DRAFT

3.10.4.2 Guidelines
The developer should control the visual models, charts, any intermediate translations of the models and the code
generated from the model. It is important to understand that there are two parts to UML: (1) a graphical notation,
and (2) an underlying model representation with a well-defined semantics. The diagrams are simply views of the
underlying model, and are physically separate from it. Each model element may appear in any number of diagrams
or none at all. In the extreme, a UML model need not have any graphical representation at all. If the tools used to
develop the models will automatically track the different components of the software requirements and design, then
the tool may need to be qualified, unless the tool can be shown to be deterministic or the output of the tool is
verified.

Visual modeling tools should be shown to be deterministic and preserve software life cycle data integrity. Software
visual modeling tools may need to add integrity checks to their raw data files to ensure that when the tool opens or
closes a file, the file’s integrity is maintained. For example, checksums or printed copies of the models can be
compared to the electronic visual models to ensure integrity or electronic copies could have integrity checks (cyclic
redundancy checks) of the files computed and compared to ensure the tool does not introduce errors. The visual
tools can also be qualified as software development tools.

As with any software life cycle data, DO-178B configuration management concepts apply to the artifacts of OO
tools (i.e. frameworks, model files, manual or automatic generated code, and the software environment)

3.10.5 Visual Modeling Tools Frameworks
Current visual modeling tools that are used for OO development make use of frameworks for automatic code
generation, replacing tedious programming tasks. Frameworks may include patterns, templates, generics, and classes
in ways requiring new verification approaches. The tool’s framework may or may not enforce requirements, design
and coding standards. The tool’s framework may or may not ensure that the relevant objectives for software
requirements, design and source code are achieved for all software to be included in the final software to be
embedded in the airborne system.

3.10.5.1 Relevant DO-178B Sections and Objectives
DO-178B [1], Sections 4.4, 4.4.1 and 4.4.2 contain guidance for planning the software development environment to
be used to develop the airborne software, including some language and compiler considerations. The environment
and tools to be used are specified in [1], Section 11.15, the Software Life Cycle Configuration Index. Tool
qualification criteria for software development tools are in [1], Section 12.2. Since components of the “framework”
may end up embedded in the airborne software, guidance related to Previously Developed Software should also be
addressed [24].

3.10.5.2 Guidelines
Some of the OO tools provide a framework to automate and generate the source code from the UML model and
framework “libraries” of patterns, templates, generics and classes; replacing the tedious coding tasks for the user.
This will add code or objects (i.e., some tools may generate dynamic constructors, destructors, queues, stubs,
skeletons, and other features). Engineers should understand the tools that are used to develop the airborne
application and what components of the framework are ending up embedded in the airborne software. The
framework and the tool may need to be qualified, and components of the framework embedded in the airborne
application should be assured to the same level as the application.

If components of the framework are going to be part of the airborne application, they must be assured to the same
level as other components of the airborne application.

3.10.6 Automatic Code Generators
Current visual modeling tools that are used for OO development provide a capability to generate source code
directly from UML models. Most of the existing UML tools today can use visual modeling diagrams to construct
models and generate source code from these models. The level of source code generation depends on the tool and on

3-51

Volume 3 DRAFT

the user of the tool. Some of the tools support “full” automatic code generation and some generate only the skeleton
of the code. For “full” automatic code generation, the user may also need to produce additional information (e.g.,
state charts, activity diagrams, and/or UML action semantics) to specify additional detail of their implementations.

Visual Model
(i.e. UML Model)

Source Code

OR Auto code
generation

Manual Code
Generation

Object code

Compiler

Executable

Figure 3.10-1 Code Generation using Visual Modeling Tools

3.10.6.1 Applicability
When discussing automatic code generation, this section assumes that the tool is an automatic code generator that
generates source code. Then the source code is provided to a compiler that generates the object code. The object
code can then be linked to generate the executable object code, and then loaded (or burned) into computer memory
for execution. The tool may automate this process by providing one make file to do all of the steps. The code
generated has to comply with the coding standards; the user may or may not have control over the code generator.
This may be a problem is the code generated does not comply with the coding standard.

3.10.6.2 Related DO-178B Sections and Objectives
See DO-178B [1] sections 5.5 and 6.4.4, and see section 12.2 for software development tool qualification.

3.10.6.3 Guidelines
Most of the OO UML-based tools use some type of automatic code generation. Since the UML is a formally defined
language, the tools can take the class diagrams, object model diagrams, state charts, and activity diagrams and
generate the source code, or at least the structure. The code generator is a software development tool that may need
to be qualified to the same level as the airborne software application (see section 12.2.2 of DO-178B [1]and FAA
Order 8110.49 [24]). Qualification will be of a defined configuration. If the automatically generated code will be
manually modified, the applicant should define and implement a process for controlling the automatically generated
code, manually modified code and keeping track of all changes.

3-52

Volume 3 DRAFT

3.10.7 Structural Coverage Analysis Tools
Because of the large manual effort required to perform and measure structural coverage, developers have become
increasingly reliant on tools that measure the structural coverage and identify “gaps” in that coverage. The current
structural coverage tools available may not “be aware” or have visibility to the internals of inherited methods and
attributes and polymorphic references supported with dynamic binding such that they can provide a reliable
measurement per section 3.12 of the structural coverage achieved by the requirements-based testing. Sections 3.12.4
and 3.12.5 provide the details for inheritance and dynamic binding respectively.

3.10.8 Structural Coverage Analysis for Inheritance
Current tools performing structural coverage analysis of inheritance fall into two classes as identified in chapter 13:

• Those that perform concrete coverage analysis,
• Those that perform context coverage analysis.

If a context sensitive structural coverage analysis tool is used, then where unnecessary re-verification was not
performed, an explanation will need to be given for the shortfall in the structural coverage analysis coverage report.
The HIT analysis can be used to document that re-verification was not necessary.

If a context-insensitive (i.e., concrete) structural coverage analysis tool is used, the process will need to be
augmented to ensure the appropriate re-verification of inherited features occurs, with the corresponding structural
coverage of the inherited feature in the inherited context. The HIT analysis can be used to identify the necessary re-
verification.

3.10.8.1 Related DO-178B Sections and Objectives
See DO-178B [1] Table A-7 objectives 5, 6, 7 & 8, and sections 6.4.4.2 and 6.4.4.3 regarding structural coverage
analysis and related sections 6.3.6, 11.3c(2), d and g, 11.13, and 11.14.

3.10.8.2 Guidelines
Both applicants and the FAA need to understand which form of analysis for inheritance their structural coverage
analysis tools perform. If the tool performs analysis on concrete methods only, then the verification process will
need to identify where additional verification is needed, and that the appropriate tests are run and the appropriate
structural coverage is obtained. If the tool performs analysis on both concrete and inherited methods, then the
verification process will need to identify where tool reported non-coverage was not needed. Additionally, the
structural coverage tool may need to be qualified as a software verification tool.

3.10.9 Structural Coverage Analysis for Dynamic Dispatch
Two specific issues of concern for structural coverage are related to dynamic dispatch. The first issue exists because
many current Structural Coverage Analysis tools do not “understand” dynamic dispatch, i. e. do not treat it as
equivalent to a call to a dispatch routine containing a case statement that selects between alternative methods based
on the run- time type of the object. As well, control and data flow analysis requirements of DO- 178B with respect
to dynamic dispatch are more complex with respect with dynamic dispatch.

As identified in Section 3.11, there are multiple approaches to the structural coverage analysis of dynamic dispatch
(polymorphic reference). As the discussion in Section 3.11 makes clear, the proper verification of polymorphism
and dynamic dispatch is still an active research area. Until a final answer is in, a minimal requirement should be the
execution of all polymorphic references, and the execution of all possible dispatches collectively (i.e., coverage of
all entries in the dispatch table) [26]. Unfortunately, current tools performing structural coverage of polymorphism
with dynamic dispatch only measure the execution of the polymorphic reference.

3.10.9.1 Related DO-178B Sections and Objectives
See DO-178B [1] sections 6.4.4.2 and 6.4.4.3; and also related sections 6.3.6, 11.3c(2), d and g, 11.13, and 11.14.

3-53

Volume 3 DRAFT

3.10.9.2 Guidelines
Structural coverage analysis tools for OO languages should measure coverage for each polymorphic reference and
each entry in the dispatch tables. Unfortunately, current tools performing structural coverage of polymorphism with
dynamic dispatch only measure the execution of the polymorphic reference, and thereby support only the first part
of the recommended coverage analysis. These tools will need to be augmented with other analyses or tools in order
to support the second part of the recommendation, coverage of every entry in the dispatch tables. For example, this
can be achieved as a result of using the substitutability test guidelines described in Section 3.3 of this handbook
(covering every method table entry):

• Subtyping,
• Formal Subtyping,
• Unit Level Testing of Substitutability,
• System Level Testing of Substitutability Using Assertions,
• System Level Testing of Substitutability Using Specialized Test Cases,

Compliance with these guidelines should be combined with statement coverage (executing every polymorphic call).
Additionally, the structural coverage tool may need to be qualified as a software verification tool.

3-54

Volume 3 DRAFT

3.11 Traceability

3.11.1 Purpose

This section addresses issues influencing compliance with DO-178B objectives regarding traceability, when object-
oriented development and verification methods and tools are used. As with most of the sections in this handbook,
UML terminology is used, since UML is the predominant OO modeling language currently being considered by the
aviation community, and other modeling languages present similar issues. In this section, we assume that the
software development process starts with a set of system level requirements allocated to software. These
requirements can be functional requirements written in text, a requirement model, a set of Use Cases, or even a
combination of these approaches.

3.11.2 Scope/Background

Current object-oriented (OO) methods and tools (either internally developed or commercially procured) may not
satisfy the DO-178B objectives related to traceability. This section of the handbook documents the issues related to
traceability when OO methods and tools are used and defines some guidelines for addressing those issues.

Traceability is an important aspect of meeting DO-178B objectives. Traceability is used to:

1. Enable verification of implemented system requirements, high-level requirements, and low-level requirements;
2. Verify the absence of unintended function and/or undocumented source code;
3. Provide visibility to the derived requirements. Traceability applies to both the verification and configuration

management processes [2, FAQ #71].

In general, traceability is complicated by:

• Functional requirements specified by Use Cases,
• Dynamic dispatch, polymorphism, and inheritance,
• Overloading and overriding functionality.

3.11.3 Overall approach
This section focuses on traceability that provides the evidence of a link between a requirement and its
implementation, including the identification of derived requirements. Additionally, the link between UML artifacts
and source code is discussed. DO-178B [1] defines traceability as: The evidence of an association between items,
such as between process outputs, between an output and its originating process, or between a requirement and its
implementation.
The verification process provides traceability between the implementation of the software requirements and
verification of those software requirements:

• The traceability between the software requirements and the test cases is accomplished by the requirements-
based coverage analysis.

• The traceability between the code structure and the test cases is accomplished by the structural coverage
analysis.

DO-178B guidelines require traceability between system requirements and software requirements to enable
verification of the complete implementation of the system requirements. The low-level requirements should be
traced to the high-level requirements ensure full implementation of the high-level requirements and to verify the
architectural design decisions made during the software design process. In addition, traceability between source
code and low-level requirements should be provided to enable verification of the absence of undocumented source
code and verification of the complete implementation of the low-level requirements. Traceability from system

3-55

Volume 3 DRAFT

requirements to high-level requirements to low-level requirements to code also helps identify derived requirements
and ensure they are passed up to the system safety assessment process.

3.11.3.1 Related DO-178B Sections and Objectives

The following DO-178B objectives are directly related to traceability:
• Objective 6 of Table A-3;
• Objective 6 of Table A-4;
• Objective 5 of Table A-5;
• Objectives 3 through 8 of Table A-7;
• Objective 2 of Table A-8.

Other objectives within DO-178B are indirectly related to traceability. The following OOT issues specifically make
it difficult to comply with DO-178B’s objectives. Each issue is discussed with recommended guidelines to address
the issues.

3.11.4 Tracing to Functional Requirements

Traceability of functional requirements through implementation may be lost or difficult with an object-oriented
design or life cycle that supports OOT. A mismatch between function-oriented requirements and an object-oriented
implementation may cause traceability problems. For example, providing traceability from a code sequence to a
specific requirement may be difficult. Tracing to a "logical view" may not be sufficient.

3.11.4.1 Guidelines
The software development process usually starts with a set of system level requirements allocated to software.
These requirements can be documented using text, requirement model or Use Cases. In UML, Use Cases represent
the functional requirements of the system. These functional requirements can be traced to the system level
requirements that can be documented in text. The software functional requirements will be decomposed to create the
low level requirements and any derived requirements necessary for the implementation of the software. Every
method or a message reception in every object in the software will have to be traced to its requirement.

Figure 3.11-1 shows a traceability model that can be used for OO based system. There are few ways to specify
requirements, the user may chose to specify requirements in text, in use cases, or create a requirements model. Such
a requirement model may be represented by a combination of requirements level (customer validated) Use Cases in
addition to a class model of the system. The user may specify the requirement for a class Statecharts. In this case,
the transition and the states of each Statechart could become the low-level requirements.

Whatever method the user use to specify the requirements they need to be clearly tagged. The diagram above shows
that design, implementation, and testing elements are traced to the requirements.

In the design stage, instances are traced to classes. Classes may have relations and will have to be traced to each
other. If class interfaces are specified as contracts (with pre/post conditions for operations and class invariants), then
tools can be used to help trace the relationship between classes and between operations and check them for
consistency and correctness. Each operation or a message provided by the instance will be traced to the instance.
The implementation files will be traced to the instances.

The test model will be traced to the requirements. This paper assumed that test classes will not have relations and
each test class will have one instance.

3-56

Volume 3 DRAFT

Design Implementation

Test

Requirements

System
Requirements

allocated to software

High-Level
Software

Requirements

Use Cases

Classes

Operations

Operations

Instances

Messages

Messages

Test Instances

Test Classes

Trace to Requirement

Trace to Requirement

Trace to Requirement

Trace relations

Trace Releations

.CPP .h

Trace to
Requirement

Trace to
 Requirement

Figure 3.11-1 Overview of Traceability

3.11.5 Complex Class Hierarchies and Relationships

Class hierarchies can become overly complex, which complicates traceability. Generalization, weak aggregation,
strong aggregation, association and composition are some of the relations that can be used to create the class
diagrams.

3.11.5.1 Guidelines

The realization of a Use Case may be specified by a set of collaborations. The collaborations define how instances in
the software interact to perform the sequences of the Use Case. Traceability should be done at the instance level.
When the user creates an instance, they must know what that instance is traced to and where its requirements are
coming from. The instances themselves must be traced to their classes. The class and all of its contents and relations
should be traced to a higher-level class or to a Use Case. Since the high level classes are the realization of Use
Cases, which is the functional requirements of the software, the high level classes should be traced to the Use Cases
that they implement. The Use Case must be traced to a system level requirement or a higher-level Use Case. Not all
of the UML diagrams must be traced; tracing all of the objects in the software should be sufficient. Only the
diagrams and UML modeling elements that add some requirements or affect the generation of the executable should
be traced. Class hierarchies and their relations need to be flattened and every class should have clear traceability to
its high level class, Use Case, or text requirements.

The following relations affect traceability in the following ways:

• Association is the semantic relationship between two or more classes that specifies connections among their
instances. In this case, there is no need to trace associations, since they only indicate that one class can talk to the

3-57

Volume 3 DRAFT

other. Each class should have its own traceability to its requirements. Association classes are treated as regular
classes and they will have to be traced to the requirements that cased their existence.

• Aggregation is a special form of association that specifies the whole-part relationship between the aggregate
(whole) and a component (part). Aggregation will affect traceability, because the instance of the aggregate
(whole) will have to be traced to both the whole and the part requirements. The part will only have to be traced to
its own requirements

• Generalization is the relationship between a more general element and a more specific element. The specific
element is fully consistent with the more general element. An instance of the more specific element may be used
where the more general element is allowed. Generalization will affect traceability, because any instance of the
specific element should be traced to its own requirements. Additionally, it should be traced to the requirements
of the general element from which it is inherited.

Normally traceability is limited to the UML elements and does not include diagrams.

3.11.6 OO Design Notation and Traceability Ambiguity

When working with UML or OOT in general, the requirements, design, and implementation may have multiple
views. Each view may add or show different information. Unfortunately, many of the UML tools do not currently
provide a traceability mechanism. Additionally, UML is a language that was written to provide the user with
maximum flexibility, which in the safety-critical world might reduce controllability.

3.11.6.1 Guidelines

Each UML element (e.g., class, method, object, Use Case) should have traceability, but not every diagram
containing those elements needs to be traced. For example, an object model diagram may not need to be traced, but
every object in the diagram should be traced to its own requirements. The developer should have a process that
enforces the guidelines for traceability, some of the basic guidelines include:

• Every object in the software should be traced to its class.
• Every class in the software should be traced to its super class.
• Every function call or an message should be traced to its class.
• Each overridden or overloaded operation should be traced to some requirement(s) or Use Case (s).
• Every class or super class should be traced to the Use Case (s) that they realize.

3.11.7 Traceability and Dynamic Binding/Overriding

Establishing functional requirements coverage of a class is difficult to assess given dynamic binding and overriding.
Specifically, it may be difficult to know if a class has been fully exercised.

3.11.7.1 Guidelines

Traceability must be performed to the object level. Each function in an object needs to be traced. This will provide
traceability to the implementation of any virtual functions or functions that have been overridden. Component based
design or Design-by-contract approaches may be used.

3.11.8 Dead and Deactivated Code

The difference between dead and deactivated code is not always clear when using OOT. Without good traceability,
identifying dead versus deactivated code may be difficult or impossible.

3.11.8.1 Guidelines

If the OOT traceability is done to the function or event (message) level, then it will be possible to identify dead code
at the function level. This will not cover code within a function. OO concepts encourage building reusable classes.

3-58

Volume 3 DRAFT

The idea of reuse means that classes are built with generic functional requirements that can be used in multiple
systems. In this case, the reusable library may include some deactivated or dead code in a specific application.
Traceability analysis should be performed on the reusable library in order to identify dead and deactivated code.
Dead and deactivated code is further addressed in section 3.9 of this handbook.

3.11.9 Many to Many Mapping of Requirements to Methods

The isolation of functions into classes may result in a mapping of requirements to OOT models in which:

a) A given requirement may map to a number of functions spread over several classes;

b) The same function, in a given class, may contribute to more than one requirement.

This issue applies to the mapping of requirements to methods at all levels of OO modeling (during both analysis and
design).

3.11.9.1 Guidelines

Each function within an instance should be traced to its requirements. The function can have more than one
requirement, but it should not have more than one Use Case. This is the normal case for a Use Case driven
development approach but it is a good practice to reduce the complexity of traceability even if another approach is
used. In this case, we may have one Use Case traced to many functions. The traceability data for each Use Case
should contain the references to all of the functions within the objects that implement that Uses Case.

If it is necessary to trace one function to multiple Use Cases, then Use Case relationships may be used to help
eliminate redundancy and support traceability.

3.11.10 Iterative Development

Iterative development is often desired in OO implementation. Each iterative cycle has its own requirements
(normally a set of Use Cases), design, implementation, and test. There is a risk of losing traceability when using
iterative development. This can be caused by adding or changing requirements, design, or implementations.

3.11.10.1 Guidelines

Iterative development is most effective when each iterative cycle is completed prior to starting the next cycle. The
iteration should have its own requirements, design, implementation, and test. Completeing traceability for each
iterative cycle is recommended, and an impact analysis should be done on the current iteration, whenever the
requirements from the previous iterations are changed.

3.11.11 Change Management for Reusable Components

Reusability is one of the objectives of OO development, but reusable components may be hard to trace because they
are designed to support multiple usages of the same component. Reusable components may also have functionality
that may not be used in every application.

3.11.11.1 Guidelines

Traceability must be done for each application regardless of its usage of reusable components. When reusable
components are used, the traceability should show implementation and verification mapping for all requirements, or
as a minimum, provide verification and justification for the unused functionality. See section 3.9 of this handbook
for further guidelines on reuse.

3-59

Volume 3 DRAFT

3.12 Structural Coverage

3.12.1 Purpose
This section addresses issues concerning compliance with the structural coverage objectives given in DO-178B [1]
and clarified in DO-248B [2] for certain features of object-oriented technology.

3.12.2 Background
Structural coverage as one of the adequacy measures of requirements-based testing will not go away with OOT.
Most of what has been learned in the testing of traditional (functional) systems still applies within OOT. However,
traditional functional testing with traditional structural coverage metrics based on source code may not be adequate
for object-oriented software [25][33][34]. In particular, inheritance and polymorphism with dynamic dispatch are
two OOT mechanisms that present problems with verification in general, and testing and structural coverage in
particular [25][34][19].

The FAA has already sponsored some research in this area [26]. Not only were issues identified for inheritance and
polymorphism with dynamic dispatch, but the broader issue of data coupling and control coupling was also raised.

3.12.3 Overall approach
This section is intended to provide an approach for addressing DO-178B [2, FAQ #71] objectives for structural
coverage when using the OO features of inheritance and polymorphism with dynamic dispatch. The broader issue of
data coupling and control coupling is also mentioned as a place-holder. The section is related to DO-178B [1]
sections 6.4.4.2 and 6.4.4.3; and also related to sections 6.3.6, 11.3c(2), d and g, 11.13, and 11.14, Table A-7,
objectives 5, 6, 7 and 8.

3.12.4 Structural Coverage of Inheritance
The issue concerning the adequate verification of inheritance is whether fully verified inherited features, particularly
methods, need re-verification in the subclass. It turns out that some, but not all, inherited features require re-testing
(and coverage) within the subclass [27][28, ch. 7, pp. 249-267)][29, ch. 11, pp. 164-213]. The Hierarchical
Incremental Testing (HIT) of class structures approach was developed to identify where retesting of inherited
features was necessary, and where it was not [27]. Table 3.12-1 presents a summary of HIT. The first column of
Table 3.12-1 identifies the incremental change made in the subclass. There are three changes made in subclasses that
impact the testing performed on the superclass:

• A method can be inherited. If there are no direct or indirect polymorphic references affecting this method, then it
remains unchanged in the purest sense, and no retesting is needed. If there are polymorphic references affecting
the method, then the method can be considered to have a change in integration, and some retesting will be
necessary.

• A method can be overridden. This is the case when a new method is provided in the subclass for an existing
method in the superclass.

• A new method can be added. This includes either the addition of a new operation and method in the subclass, or
the addition of a method for an abstract operation in the superclass.

In addition, new attributes can be added in the subclass. The impact of these new attributes is through the new or
overridden methods that access those attributes. The second column of Table 3.12-1 identifies the testing impact in
the subclass for the incremental change.

3-60

Volume 3 DRAFT

Incremental
Change

Testing Impact

Inherited
(unchanged)
Method

No retesting needed if the method interacts, directly or indirectly, only with inherited methods
and attributes.
Limited retesting needed when the method interacts, directly or indirectly, with new or
overridden methods or attributes. Existing tests that deal only with inherited methods and
attributes are still applicable, along with the coverage analysis for those tests. Some existing
tests can be reused, though new coverage analysis will be needed for those tests. Some new tests
will be needed, along with the coverage analysis for those tests.

Overridden
(changed)
Method

Extensive retesting and coverage analysis is needed. Many existing tests can be reused, though
new coverage analysis will be needed for those tests. For most of these tests, the requirements
coverage should still be applicable since (only) the implementation has changed. Some new tests
will be needed, along with the coverage analysis for those tests.

New Method Complete testing and coverage analysis is needed. All new tests will be needed, along with the
coverage analysis for those tests.

Table 3.12-1 Hierarchical Incremental Testing Summary

One of the techniques introduced for the understanding of inheritance is that of the flattened class. In a flattened
class, all inherited features are represented along with the features explicitly defined within the subclass. Figure
3.12-1 illustrates a normal inheritance hierarchy on the left, and a flattened inheritance hierarchy on the right. In the
flattened form, all inherited attributes and methods appear in italics.

Inheritance Hierarchy Flattened Inheritance Hierarchy

Class_2

Attribute_2
Method_2()
Method_3()

Class_3

Attribute_3

Method_4()

Class_1

Attribute_1
Method_1()
Method_2()

Class_1

Attribute_1
Method_1()
Method_2()

Class_2
Attribute_1
Attribute_2

Method_1()
Method_2()
Method_3()

Class_3
Attribute_1
Attribute_3

Method_1()
Method_2()
Method_4()

Figure 3.12-1 Inheritance

3.12.4.1 Guidelines
Requirements-based testing and requirements and structural coverage of the flattened class is a recommended
practice for OO [11, ch. 10.5]. A number of researchers recommend class flattening as they believe the savings from

3-61

Volume 3 DRAFT

trying to save tests will be negated by the effort of the analysis, plus the circumstances where savings are possible
will be very rare in real systems. Binder states “Retesting can be safely skipped only when (1) there is no possible
data flow or control flow from or to the superclass and subclass methods, or (2) the subclass is null and simply
renames the superclass.” [11, p. 510]. The difference between covering the class, and covering the flattened class
for Method_1 from Figure 3.12-1 is demonstrated in Figure 3.12-2 and Figure 3.12-3.

In Figure 3.12-2, complete coverage is shown for Method_1 as a composite of the coverages obtained within
Class_1, Class_2 and Class_3. This is referred to as coverage of concrete features.

Class_1

Class_3Class_2

Method_1()

Method_1() Method_1()

Structural
Coverage

Report

Figure 3.12-2 Concrete Coverage

In Figure 3.12-3, only partial coverage is shown for Method_1 in the three different classes. This is referred to as
context coverage.

Class_1

Class_3Class_2

Method_1()

Method_1() Method_1()

Structural
Coverage

Report

Figure 3.12-3 Context Coverage

DO-178B does not require the context sensitive verification required by flattened classes. Always flattening the
class hierarchy for verification, recommended in [26], will lead to some over-verification of certain inherited
features (e.g., simple get and set methods for attributes). Fortunately, HIT can be used to prevent the over-

3-62

Volume 3 DRAFT

verification by identifying those methods that do not need any re-verification. The HIT analysis could be automated,
incorporated into structural coverage analysis tools and qualified.

3.12.5 Polymorphism with Dynamic Dispatch
Polymorphism with dynamic dispatch is a mechanism within OOT whereby a name can refer to objects of different
classes. The issue concerning the adequate verification of polymorphism with dynamic dispatch is whether the
method with the polymorphic reference has been adequately integrated with all of the methods the polymorphic
reference can dispatch to. Polymorphism with dynamic dispatch is illustrated in Figure 3.12-4 and Figure 3.12-5.
Figure 3.12-4 presents the flattened class from Figure 3.12-1. Recall that in a flattened class, all inherited features
are italicized.

Class_1

Attribute_1
Method_1()
Method_2()

Class_2
Attribute_1
Attribute_2

Method_1()
Method_2()
Method_3()

Class_3
Attribute_1
Attribute_3

Method_1()
Method_2()
Method_4()

Figure 3.12-4 Flattened Inheritance

Assume that in our system we have an “Object_X” that can refer to objects of either Class_1, Class_2 or Class_3.
When we see the call to “Object_X.Method_2()” in the source code for our system, different Method_2’s will be
called depending on the run-time class of the object that “Object_X” refers to. This is depicted graphically in Figure
3.12-5.

Figure 3.12-5 shows that the reference “Object_X.Method_2()” can dispatch to either Class_1.Method_2() or
Class_2.Method_2(). Class_1.Method_2() will be called if “Object_X” refers to an object of either Class_1 or
Class_3. This is because Class_1.Method_2() was defined in Class_1 and inherited in Class_3. Class_2.Method_2()
will be called if “Object_X” refers to an object of Class_2. This is because Class_2.Method_2() was defined in
Class_2, where it overrode the definition ofClass_1.Method_2(). Polymorphism with dynamic dispatch has made
some of the control flow, and thereby the associated data flow, implicit in the source code rather than explicit.

3-63

Volume 3 DRAFT

Object_X

Method_2

Class_1.Method_2() Class_2.Method_2()

Figure 3.12-5 Dynamic Dispatch

3.12.5.1 Guidelines
Numerous approaches have been proposed for the adequate testing of polymorphic references:

1. The first approach says that execution of the polymorphic reference is sufficient. This approach confines testing
to the level of abstraction of the source code (i.e., every statement has been executed). This approach assumes
that the underlying implementation hides no details requiring verification below the abstraction level of the
source code. This approach treats dynamic dispatch as being equivalent to static dispatch. Watson and McCabe
refer to this as the “optimistic approach” [30, pp. 62-63]. DO-178B currently does not require verification below
the level of the source code for software at Levels C and B. DO-178B does require verification beyond the
source code for software at Level A.

2. The second approach says to treat a polymorphic reference as a case/switch statement [31]. This approach
assumes that the underlying implementation is important. This approach can be implemented in two major ways.
The first way is to recognize that the “case/switch statement” is repeated in multiple places. Testing and coverage
could be obtained from the collective executions of all the references (inlined call to the case/switch statement).
The second way is to exhaustively test and cover the feasible “branches” at each reference, which makes this
approach equivalent to the next one.

3. The third approach says that execution of every possible dispatch is required. Binder states “Although a
polymorphic message is a single statement, it is an interface to many different methods. Just as we would not
have high confidence in code for which a only a small fraction of the statements or branches had been exercised,
high confidence is not warranted for a client of a polymorphic server unless all the message dispatches generated
by the client are exercised” [29, p. 438]. Watson and McCabe refer to this as the “pessimistic approach” [30, p.
63]. This approach can also be implemented in two ways. The first way is to look at polymorphic messages only
and ignore polymorphic parameters. The second way is to consider the polymorphic parameters. This brings in a
level of complexity that the next approach attempts to deal with.

4. The fourth approach says that execution of a “mathematically significant” subset of all possible dispatches is
required[32]. This approach attempts to mitigate the enormous number of tests and required effort that can result
from the exhaustive execution of all possible dispatches.

5. The fifth and final approach says that we need to execute every polymorphic reference, and for one reference site
that forms an equivalence class with all others dispatching on the same base class, require execution of every
possible dispatch. Note that the exhaustive dispatching can be done in a test driver instead of the application.
This is another attempt to mitigate the exhaustive approach. Watson and McCabe refer to this as the “balanced
approach” [30, pp. 63-64].

As the previous discussion has made clear, the proper verification of polymorphism and dynamic dispatch is still an
active research area. Until a final answer is in, a minimal requirement should be the execution of all polymorphic
references, and the execution of all possible dispatches collectively (i.e., coverage of all entries in the dispatch table)
[21][26].

3-64

Volume 3 DRAFT

Current tools performing structural coverage of polymorphism with dynamic dispatch only measure the execution of
the polymorphic reference, and thereby support the first approach discussed previously. These tools support the first
part of the recommended approach. These tools will need to be augmented with other analyses or tools in order to
support the second part of the recommendation.

3.12.6 Data Coupling and Control Coupling
Data coupling and control coupling relationships can be far more complicated and obscure in OOT than they are in
traditional (functional) systems/software.

One impact on data coupling and control coupling is in the nature of OOT. OOT encourages the development of
many small, simple methods to perform the services provided by a class. Often the control flow is moved out of the
source code through the use of polymorphism and dynamic dispatch. In essence, the control flow, and thereby the
control coupling, will become implicit in the source code, as opposed to being explicit. There is a similar effect on
the data flow, and thereby the data coupling.

OOT also encourages hiding the details of the data representation (i.e., attributes) behind an abstract class interface
Suggested “best practice” is that attributes of an object should be private, and access to them only provided through
the methods appropriate to the class of the object. Being able to access attributes only through methods makes the
interaction between two or more objects implicit in the code.

Some simple examples demonstrating how complex things can get are given in[35].

3.12.6.1 Guidelines
This is an active area of research, both within academia and the FAA. At this point in time, this handbook can give
no guidance on dealing with data coupling and control coupling within OOT.

3-65

Volume 3 DRAFT

3.13 References

1. Software Considerations in Airborne Systems and Equipment Certification, Document No. RTCA/DO-178B,
RTCA Inc., 1828 L Street, Northwest, Suite 805, Washington, DC 20036.

2. DO-248B, Final Report For Clarification of DO-178B, Software Considerations in Airborne Systems and
Equipment Certification, 10-12-01.

3. Daugherty, Gary. Application of the Subtyping Pattern to System Level Test, Rockwell Collins technical report,
April 2002, available from the author (gwdaughe@rockwellcollins.com).

4. Object Management Group. OMG Unified Modeling Language Specification, version 1.3, June 1999, available
from http://uml.shl.com/artifacts.htm

5. Gosling, James et al. The Java Language Specification, Addison-Wesley, 1996.

6. Lindholm, Tim and Frank Yellin. The Java Virtual Machine Specification: Second Edition, Addison-Wesley,
1999.

7. Liskov, Barbara and Jeanette Wing. “A Behavioral Notion of Subtyping”, ACM Transactions on Programming
Languages and Systems, 16(6): 1811-1841, November 1994.

8. Liskov, Barbara with John Guttag. Program Development in Java: Abstraction, Specification, and Object-
Oriented Design, Addison-Wesley, ISBN: 0201657686, 2001.

9. Lorentz, Mark and Jeff Kidd. Object-Oriented Software Metrics, Prentice-Hall, Englewood Cliffs, NJ, ISBN: 0-
13-179292-X, 1994.

10. Barnes, John. Programming in Ada95, 2nd edition, Addison-Wesley, 1998.

11. Binder, Robert V. Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-Wesley, Reading,
MA, 2000.

12. Bruce, Kim, Luca Cardelli, Giuseppe Castagna, The Hopkins Object Group, Gary T. Leavens and Benjamin
Pierce. On Binary Methods, Iowa State University, technical report #95-08a, December 1995.

13. Castagna, Giuseppe. Object-Oriented Programming: A Unified Foundation, Birkauser, Boston, ISBN: 0-8176-
3905-5, 1997.

14. Clifton, Curtis, Gary T. Leavens, Craig Chambers, and Todd Millstein. “MultiJava: Modular Open Classes and
Symmetric Multiple Dispatch for Java”, OOPSLA 2000 Conference Proceedings: ACM SIGPLAN Notices,
vol. 35, no. 10, October 2000, pp. 130-145.

15. Johnston, Simon. Ada95 for C and C++ Programmers, Addison-Wesley, 1997.

16. Meyers, Scott. Effective C++, 2nd edition, Addison-Wesley, Reading, MA, 1998.

17. Meyer, Bertrand. “Applying design by contract.” IEEE Computer 25(10):40-51, October 1992.

18. Meyer, Bertrand. Object-oriented Software Construction, 2nd edition, Prentice-Hall PTR, Upper Saddle River,
NJ, 1997.

19. Jeff Offutt, Roger Alexander, Ye Wu, Quansheng Xiao, and Chuck Hutchinson. “A Fault Model for Subtype
Inheritance and Polymorphism”, Twelfth IEEE International Symposium on Software Reliability Engineering
(ISSRE ’01), IEEE Computer Society Press, November 2001, pp. 84-93.

20. FOLDOC: Free Online Dictionary of Computing, http://foldoc.doc.ic.ac.uk.

3-66

mailto:gwdaughe@rockwellcollins.com
http://uml.shl.com/artifacts.htm

Volume 3 DRAFT

21. AVSI. Guide to the Certification of Systems with Embedded Object-Oriented Software, available from Boeing,
Rockwell Collins, Honeywell, and Goodrich, or directly from the Aerospace Vehicle Systems Institute (AVSI).

22. Stroustrup, Bjarne. The Design and Evolution of C++, Addison-Wesley, 1994.

23. Guide for the Use of the Ada Programming Language in High Integrity Systems, ISO/IEC PDTR 15942, July 1,
1999, see http://anubis.dkuug.dk/JTC1/SC22/WG9/documents.htm

24. FAA Order 8110.49, Software Approval Guidelines, Chapter 4, June 3, 2003.

25. Perry, Dewayne E. and Gail E. Kaiser. “Adequate Testing and Object-Oriented Programming”, Journal of
Object-Oriented Programming, January/February 1990

26. Chilenski, John Joseph, Thomas C. Timberlake and John M. Masalskis, Issues Concerning the Structural
Coverage of Object-Oriented Software, DOT/FAA/AR-02/113, November 2002

27. Harrold, Mary Jean, John D. McGregor and Kevin J. Fitzpatrick. “Incremental Testing of Object-Oriented
Class Structures”, Proceedings of the 14th International Conference on Software Engineering, 1992

28. McGregor, John D. and David A. Sykes. A Practical Guide to Testing Object-Oriented Software, Addison-
Wesley, 2001

29. Siegel, Shel. Object Oriented Software Testing : A Hierarchical Approach, John Wiley & Sons, 1996

30. Watson, Arthur H.,Thomas J. McCabe. Structured Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric, NIST Special Publication 500-235, 1996

31. Jacobson, Ivar, Magnus Christenerson, Patrik Jonsson and Gunnar Overgaard. Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, 1992

32. McDaniel, Robert and John D. McGregor. Testing the Polymorphic Interactions between Classes, TR94-103,
Clemson University, 1994

33. Booch, Grady. Object-Oriented Analysis and Design with Applications, 2nd edition, Benjamin/ Cummings,
Redwood City, CA, 1994.

34. FAA AC 20-RSC, Reusable Software Components, Draft (*** will update when AC is signed)

35. Dictionary of Computer Science, Engineering, and Technology, Editor-in-Chief Phillip A. Laplante, CRC Press
LLC, Boca Raton, Florida, 2001.

3-67

http://anubis.dkuug.dk/JTC1/SC22/WG9/documents.htm

Volume 3 DRAFT

3.14 Index of Terms
abstraction 26, 27, 33

Ada 68, 75

Aerospace Vehicle Systems Institute 29

Aggregation 59

Association 58

AVSI 29, 68

C# 17, 29

C++ 12, 23, 32, 67, 68, 72, 75, 76, 79, 82, 84, 85

class12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
26, 27, 28, 29, 31, 32, 33, 34, 35, 46, 47, 48, 49,
50, 53, 72, 73, 74, 75, 76, 78, 84, 86, 87

concrete class 73

constructors 12, 14, 16, 18, 46, 49, 52, 74, 75, 76

control coupling 25, 38, 51

coupling 14, 27

data coupling 25, 26, 48, 51

deactivated code 46, 47, 48, 49, 50, 51

Dead and Deactivated Code, and Reuse 46, 86

dead code 46, 47, 48, 51, 86

derived requirements 22, 24, 47, 48, 50

destructors 12, 17, 46, 49, 52, 76

DO-178B13, 14, 18, 24, 25, 26, 29, 36, 37, 38, 39,
40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 57, 67

dynamic binding 12, 54

dynamic dispatch12, 13, 14, 15, 16, 17, 21, 24, 25,
29, 30, 31, 51, 54, 74, 75, 76

Dynamic dispatch 13, 27, 75, 76

Dynamic Dispatch 12, 54

dynamic linking 13

Eiffel 12, 14, 23, 29

extension 14, 17, 18, 29, 75

flattened form 17, 21, 49

frameworks 46, 51, 52

Generalization 58

hierarchy12, 27, 28, 30, 32, 33, 34, 35, 49, 50, 75, 78,
82, 87

IEEE 67

implementation inheritance 29

inlining 26

Inlining 39

instrumented 22, 23

interface inheritance 28, 29, 30, 31, 79, 82, 84

Java 12, 23, 29, 67, 72, 74, 75, 76, 79, 82, 84

LSP6, 7, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
55

MC/DC 22

MultiJava 67

multiple inheritance12, 27, 28, 29, 31, 33, 34, 48, 76,
78

Multiple inheritance 29, 32

Multiple Inheritance 29, 32, 78

Object Management Group 67

OMG 67

OOT 46, 47, 49, 51

option-selectable 46, 47, 48

Overloading 44

pattern 15, 19, 22, 23, 24, 33, 76, 84

polymorphism 13, 16, 17, 51

postcondition 12, 13, 17, 18, 19, 20, 23, 27, 82

precondition 12, 13, 16, 17, 18, 19, 20, 23, 27, 82

rule3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35,
47, 48, 49, 50, 74, 75, 76, 82, 84, 85

run-time class 13, 17

service history 50

single inheritance 12, 13, 14, 29, 30, 31, 74, 75, 76

Single inheritance 12, 29

Single Inheritance 12, 72

software change impact analysis 49

Software Considerations in Airborne Systems and
Equipment Certification 67

spaghetti inheritance 27, 34

structural coverage 21, 22, 23, 25, 48, 51, 54

3-68

Volume 3 DRAFT

subclass12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 30, 31, 32, 34, 49, 76, 85

subinterface 30, 78, 79, 82, 83

subtyping 12, 13, 18, 19, 29, 31, 84

superclass12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24,
26, 27, 29, 30, 31, 32, 33, 34, 74, 76, 85

System Safety Assessment 47

Templates 36

Tools 48, 51, 52, 54, 67

traceability 19, 20, 41, 47, 48, 51, 56, 57, 58, 59, 60

Traceability 48, 51, 56

Type Conversion 41

UML 12, 16, 19, 51, 52, 53, 84

Unified Modeling Language 12, 67

uninstrumented 22, 23, 24

Use Cases 56, 57, 58, 60

visual modeling 52

visual models 51, 52. See visual modeling

3-69

Volume 3 DRAFT

Appendix A Frequently asked questions (FAQs)
Does DO-178B require compliance with the subtyping rules for substitutability (LSP)?

No. However, the structural coverage criteria must still be met, and the issues raised in volume 2 must still be dealt
with in some manner. Compliance with the subtyping rules is just one way to do so. And is compatible with the
definition of the Generalization relationship by UML (below).

Does UML require compliance with the subtyping rules for substitutability (LSP)?

UML does not directly mention the Liskov Substitutiuon Principle (LSP) or the rules given in this handbook. UML,
however, does say that the Generalization (subtyping) relationship implies substitutability, which indirectly implies
compliance with LSP.

When is it necessary to verify subtyping relationships?

At a minimum, we want to ensure substitutability when instances of different subclasses may be assigned to a
variable at run time in a given system (i.e., when polymorphic assignment is actually used).

Technically, we need not be worried about cases in which a given variable is assigned instances of different
subclasses, only in different instances of the system (e.g., as a means of parameterizing the system’s behavior).

Still, given that the UML definition of subtyping implies substitutability, it is also technically an error to use this
relationship in UML models where this is not the case.

And it is, in general, a “good idea” to verify subtyping relationships from the outset, not just when we discover
substitution actually occurs within a given system.

Is it necessary to use unit level testing to verify subtyping relationships?

No. System level testing, static analysis, and proofs may also be used to ensure (or help ensure) that the subtyping
rules are followed.

Is it necessary to use UML in order to follow the guidelines?

No. The use of UML terminology and UML examples is only a convenience. The principles underlying the
guidelines apply to other OO methodologies and modeling notations as well.

Is it necessary to use special OO coverage tools to measure structural coverage of dynamic dispatch?

No. By following an appropriate test process , it is possible to ensure that all entries of all dispatch tables are
exercized. The use of tools to measure this type of coverage, however, is still encouraged.

What role should static analysis play in the verification of OO systems?

The guidelines have been developed to restrict the use of OO in such a way as to encourage the use of various forms
of static analysis. The AVSI Guide [21], which was the basis for the first version of the Handbook, specifically
addresses how various guidelines affect the forms of static analysis recommended by [23], and required by DO-
178B.

How do the guidelines map to the DO-178B software levels?

The original AVSI Guide provided a mapping of guidelines to DO-178B software levels. This mapping was based
primarily on a consideration of which restrictions on OO features were necessary to enable the use of the types of
analysis techniques required by DO-178B at each software level, and secondarily on the error prone nature of certain
features (such as multiple implementation inheritance). This table does not appear in the publically released version
of the Guide. A similar mapping based on similar criteria, however, may appear in a future version of this handbook.

3-70

Volume 3 DRAFT

How about the use of “work arounds” as a substitute for the direct use of OO features?

The guidelines are not intended to give a “free pass” to the use of OO-like work arounds as a substitute for the direct
use of OO features. For example, the intent is not to favor the hand coding of dispatch routines (containing explicit
case statements) over the use of dynamic dispatch. By drawing an analogy between the two, the guidelines impose
the same coverage criteria for both.

Similarly, issues related to substitutability must be addressed by any system that permits the “plugging in”
(substitution) of one piece of software in place of another (either at run time or in different versions of the system
intended for different customers), whether the system uses OO or not. The OO subtyping guidelines are only a plus
in this regard. If you intend to allow substitution (of either form) in an OO system, following the guidelines provides
a well trod path for doing so. Something comparable, and not addressed by this Handbook, would still be required if
a different approach were taken.

3-71

Volume 3 DRAFT

Appendix B Extended guidelines and examples

B.1 Single Inheritance

B.1.1 Extension of the Inheritance with Overriding Guidelines
The following sections extend the definition of the Inheritance with Overriding to include:

• an avionics related example,
• a description of the general structure of the problem and the roles of the participants,
• a mapping of the general guidelines it offers to language specific guidelines for Java, Ada95, and C++.

B.1.1.1 Examples
Consider an avionics display system that defines a class DisplayElement and its subclasses (Figure B.1-1).

A given display is composed by drawing its associated elements. In order to draw the pilot's attention to critical
information, we highlight specific elements while hiding others. The specifics of drawing an element, hiding it and
highlighting it vary according to the type of element. To allow variations on the display for specific customers and
aircraft, and to minimize the impact of future changes, the overall application should deal with elements only
abstractly (e.g., in terms of the kind of information they display and not how they display it).

The code to draw the display is then:

for each display element
call the draw method associated with its run time class

end

The code to highlight a selected set of elements is then:

for each display element
call the highlight method associated with its run time class

end

The code to declutter the display is then:

for each display element
compare the importance of the element to a cutoff value for the importance of elements to be displayed
if the element is not important enough

call the hide method associated with its run time class
end

end

3-72

Volume 3 DRAFT

DisplayElement

importance : int
xOrigin : CoordinateValue
yOrigin : CoordinateValue

draw()
highlight()
hide()

NonTextualElement

highlight()

PrimitiveNonTextualElement

draw()
highlight()

AltitudeTape
width : GraphicsDistance
height :
G hi Di tcolorScheme : ColorScheme
displayedValue : Altitude
draw()
getDisplayedValue() : Altitude
setDisplayedValue(altitude : Altitude)

AirspeedTape

width : GraphicsDistance
height :
G hi Di tcolorScheme : ColorScheme
displayedValue : Airspeed

draw()
getDisplayedValue() : Airspeed
setDisplayedValue(airspeed : Airspeed)

Compass

radius : GraphicsDistance
colorScheme : ColorScheme
displayedValue : Heading

draw()

getDisplayedValue() : Heading
setDisplayedValue(heading : Heading)

TextualElement
width : GraphicsDistance
height : GraphicsDistance
displayedValue : String
draw()
highlight()
getDisplayedValue() : String
setDisplayedValue(string : String)

Client

Figure B.1-1 Class Hierarchy

B.1.1.2 Structure
In general, a client method calls an operation associated with a target object. The client method may be associated
with any object, including the target object itself. The run time class of the target object is a concrete class which
may have superclasses and subclasses. The method associated with the run time class of the object is determined at
compile time using the simple guidelines for specialization and overriding.

Polymorphically the client method may view the target object at run time as an instance of its run time class or,
more abstractly, as an instance of any of its superclasses. In all circumstances, however, it is the method associated
with the run time class of the target object that is executed when the operation is called.

3-73

Volume 3 DRAFT

clientM ethod

T argetC lasstargetO bject

10..* 1

-runT im eC lass

0..*

S uperC lass

S ubC lass

m ethodInT argetC las
s

11

m ethodInS uperC lass
11

m ethodInS ubclass
11

targetO peration
calls

1

11

+sp ec if ic at ion

1

1 +sp ec if ic at ion1+sp ec if ic at ion

executes

Figure B.1-2 Class Relationships

B.1.1.3 Participants
The client method calls the target operation on the target object, which executes the method associated with it by the
run time class of the object.

B.1.1.4 Java guidelines
Java is a strongly typed language. It provides dynamic dispatch based on the target object of a method call. The
dynamic loading of classes is supported but can be restricted (by eliminating the class loader from the run time
environment). Only single inheritance of implementation is permitted. The run time type of an object is assigned at
the point at which it is created and cannot be changed during the object’s life time.

The Simple overriding rule: is enforced by the language if the overriding of concrete methods by abstract methods
[5, p. 159, section 8.4.3] is disallowed, and if all explicitly thrown exceptions are checked exceptions (in the Java
sense). When exception handling is not used, code reviews should be used to enforce the more general guideline that
an overridden version of a method can only report either the same errors, or a more restricted set of errors than its
parent version.

The use of the keyword super in a call expression can be used to violate the Simple dispatch rule:. As a result, the
use of the keyword super should only be permitted as a means of extending a superclass method (in accordance
with the guidelines for Method Extension).

In accordance with the Initialization dispatch rule:, the body of a constructor should not be permitted to call any
operations on the object under construction except other constructors or private operations.

The bounded and deterministic nature of dynamic dispatch must be demonstrated based on the actual
implementation. Typically dispatch tables are constructed by a static linker, or by the Java Virtual Machine (JVM)
or a Java processor as classes are pre-loaded. This makes dispatch times for invokevirtual [6] both small and
fixed. The dispatch time for invokeinterface [6] potentially involves a search and may introduce a higher
overhead. Dispatch times, however, should still be both bounded and deterministic. invokeinterface can also be

3-74

Volume 3 DRAFT

implemented using dispatch tables if the implementation takes advantage of the fact that new classes cannot be
loaded dynamically, making it equivalent to invokevirtual.

B.1.1.5 Ada95 guidelines
Ada is a strongly typed language. To introduce basic object-oriented features, Ada95 provides tagged types as an
extension to the existing concept of a record. Class wide types provide a means to declare objects that may
(polymorphically) hold any of a number of related tagged type values, or corresponding access type values. The
Ada95 language requires primitive operations on a tagged type to appear in the same declaration list as the type
declaration, and to have at least one parameter or a return type that is of the tagged type. Operations can also be
provided that take a corresponding class wide parameter. An Ada package that defines a single tagged type and
primitive and class wide operations on that type corresponds to the concept of a class in C++ and Java [15, p. 169,
section 6.2.1]6. The dynamic loading of classes is generally not supported, and only single inheritance of either
interface or implementation is permitted. For tagged types, the run time type (tag) of an object is assigned at the
point at which it is created and cannot be changed during the object’s life time.

With regard to the Simple overriding rule:, code reviews should be used to enforce the rule that an overridden
version of a method can only report either the same errors, or a more restricted set of errors than its parent version.
The other restrictions are enforced by the language.

Tagged types provide the run-time type information (tag) required to make dispatching calls to primitive operations
associated with a type. Dynamic dispatch occurs when the argument corresponding to the tagged type parameter is
of a class wide type (polymorphic). With regard to the Simple dispatch rule:, the risk is that an overridden operation
might be called with an argument declared to be of a specific tagged type, when the argument itself has the run-time
tag of some derived type7. This can occur because Ada95 permits view conversions between specific tagged types so
long as this conversion is toward the root of the hierarchy [10, pp. 278]. In such conversions the underlying object
(and its tag) are not changed, only the program’s view of it [10, pp. 288]. The easiest way to enforce the Simple
dispatch rule:, is to forbid view conversions between specific tagged types, ensuring that all arguments are either of
a class wide type or of a specific tagged type with a matching tag. Conversions between a specific tagged type and a
class wide type of an ancestor type, however, are still allowed.

In accordance with the Initialization dispatch rule:, the body of a constructor should not be permitted to call any
operations on the object under construction except other constructors or private operations. Ada95 does not provide
implicitly called constructors. By convention, however, we can provide initialization procedures that can be called
explicitly.

Such an initialization procedure should call the parent type’s initialization procedure to initialize all inherited fields,
then initialize the fields defined by the type extension. In accordance with Method Extension, this call to the parent
initialization procedure should involve an explicit view conversion of the argument to the specific parent type,
intentionally avoiding the use of dynamic dispatch. To help ensure the initialization procedure is called when an
object is created, we can also provide a create function [15, p. 194] that allocates the object, calls the initialization
procedure, and returns the initialized result.

The bounded and deterministic nature of dynamic dispatch must be demonstrated based on the actual
implementation. Typically, however, dispatch tables are constructed by the compiler or linker, making dispatch
times both small and fixed.

B.1.1.6 C++ guidelines
C++ is a strongly typed language if conversions between logically unrelated types are avoided. Since such
avoidance is not possible within the constructs of the language itself, a tool that specifically checks for such
conversions must be used. C++ supports single dispatch based on the target object of the method call. The dynamic

6 Although, unlike C++ and Java, we cannot control the visibility of individual attributes (record fields). This, however, is of little
consequence if all data is hidden, as in normal practice. The Ada95 tagged type can be designated as private to ensure this.
7 This would not be a problem if the argument were declared to be of a class wide type because dynamic dispatch would then
occur.

3-75

Volume 3 DRAFT

loading of classes is generally not supported. The run time type of an object is assigned at the point at which it is
created and cannot be changed during the object’s life time.

With regard to multiple inheritance, code reviews should be used to ensure that only single inheritance is permitted
with respect to implementation.

With regard to the Simple overriding rule:, code reviews should be used to ensure that the overridden version of a
method can only report either the same errors, or a more restricted set of errors than its parent version. Overriding
methods should not declare default parameter values [16, p. 171]. All other restrictions are enforced by the language.

Dynamic dispatch occurs in C++ when the called method is declared to be virtual and the target object is specified
as a pointer or reference. With regard to the Simple dispatch rule:, , the risk is that an overridden operation might be
called with respect to a target object whose declared type is a superclass of its actual run-time type, and dynamic
dispatch might not occur.

To avoid problems with the declaration of overridden methods, a subclass should never be allowed to redefine an
inherited non-virtual function [16, p. 169]. This requires all public and protected operations to be declared using the
keyword “virtual” if subclasses are allowed to redefine them.

To avoid problems with the specification of the target object, all calls to virtual functions should involve a target
object specified as a pointer or reference.

Since the normal rules for dynamic dispatch do not apply during the execution of constructors and destructors, direct
and indirect calls to overridden methods during their execution should also be avoided.

Doing so is also consistent with the Initialization dispatch rule:, , which forbids calls to overridden methods during
object construction.

The bounded and deterministic nature of dynamic dispatch must be demonstrated based on the actual
implementation. Typically, however, dispatch tables are constructed by the compiler or linker, making dispatch
times both small and fixed.

B.1.2 Extension of the Method Extension Guidelines
The following sections extend the definition of Method Extension to describe its implementation in Java, Ada95, and
C++.

B.1.2.1 Java guidelines
In Java, the implementation of these guidelines involves a call to the superclass version of the same method using
the keyword super. Only calls to the superclass version of the same method should be allowed.

B.1.2.2 Ada95 guidelines
In Ada95, the implementation of these guidelines involves a view conversion from the derived type to the parent
(superclass) type and then a call to the parent operation that supports this implementation. This has the same effect
as the use of the keyword super in Java. Only calls to superclass versions of the same method should be allowed.

B.1.2.3 C++ guidelines
In C++, the implementation of these guidelines involves qualification of the “::” operator. Only qualified calls to the
immediate base class version of the same member function should be allowed. In addition, the “::” operator may be
used under the following circumstances:

• If class A defines method f() and then class B inherits A and defines method f(int), within class B the method f()
is hidden by the declaration of f(int). The only way to get f() from within B is to use ‘A::f()’. This is considered
to be safe if f() cannot be overridden (i.e. it is not declared ‘virtual’). Similarly, the “::” operator is needed to
access global functions that are hidden by method declarations (although global methods should generally be
avoided), and to access methods declared in a namespace.

3-76

Volume 3 DRAFT

• When code is generated by a tool and a method call is made using an object whose exact type is known, it is
reasonable for the tool to use the ‘::’ qualification to avoid the overhead of dynamic dispatch.

3-77

Volume 3 DRAFT

B.2 Multiple Inheritance

B.2.1 Composition involving multiple inheritance
The following cases illustrate the primary issues to be resolved with respect to composition involving multiple
inheritance. They are based on examples appearing in Meyer [18].

B.2.1.1 Case 1: Repeated inheritance
“As soon as multiple inheritance is allowed into a language, it becomes possible for a class (e.g. FrenchUSDriver) to
inherit from two classes (e.g. FrenchDriver and USDriver), both of which are subclasses of the same class (e.g.
Driver). This situation is called repeated inheritance.” [18, p. 543]. It is characterized by the diamond shape of the
inheritance hierarchy (Figure B.2-1).

Driver

getAge() : int
getAddress() : String
getViolationCount()
passBirthday()
payFee()

<<Interface>>

FrenchDriver
<<Interface>>

USDriver
<<Interface>>

FrenchUSDriver
<<Interface>>

Figure B.2-1 Repeated inheritance: sharing and replication, based on [18, p. 547]

The fundamental question with respect to repeated inheritance is whether inheritance of the same operation along
more than one path should result in a single operation in the subinterface or in multiple operations.

Since we are dealing with this issue with respect to interfaces (and not implementation), we must view this question
from the client’s perspective. In general, a client will be satisfied if all subinterfaces of a given interface inherit a
definition of the expected operation. Since this is guaranteed (we will have at least one definition of the operation),
clients will always be happy in this regard.

The remaining question is whether repeated inheritance should ever result in more than one definition of the
operation in the subinterface. A case for this can be made by the example appearing in Figure B.2-2. Each driver [of
a motor vehicle] has an age, and a primary residence (and associated address). We are also interested in tracking the
number of traffic violations committed by the driver, leading to a potential revocation of the person’s license.

3-78

Volume 3 DRAFT

Subinterfaces of Driver represent French drivers and US drivers. Drivers who have licenses in both countries are
categorized as both French and US drivers8.

In terms of this example, it is clear that there should be a single operation to get the driver’s age, which will be the
same in both countries. Address and number of traffic violations, however, are potentially a different matter. The
driver may have different addresses in each country and traffic violations committed in one country may not count
against his/her driving record in the other. Similarly license fees may have to be paid at different times in each
country and paying the fee in one country will not necessarily satisfy the other (although it may be possible to obtain
an international driving license that can be used in both).

The need to be able to define both shared operations (such as getAge and passBirthday) and replicated operations
(such as getAddress, getViolationCount and payFee) can be satisfied in a number of ways.

We could require that all replicated operations be specified redundantly. Doing so, we would require that
FrenchDriver define the operation getFrenchAddress, while UsDriver defines an otherwise identical operation
getUsAddress.

Alternately, the language could simply permit the renaming of those operations to be replicated in the subinterface
and assume that repeated inheritance otherwise implies sharing. This is appealing because the situations in which
replication is the right choice are relatively rare. In most cases (especially those involving interfaces), sharing is the
desired result. As Meyer notes, “Cases of repeated inheritance similar to the transcontinental drivers (Figure B.2-2),
with duplicated operations as well as shared ones, do occur in practice, but not frequently.” The case involving only
shared operations is far more common, especially with regard to interface inheritance. For this reason, it is most
important that sharing be supported well at the language level, or in any guidelines we prescribe. Additional work
(or the use of work arounds) is probably acceptable in the less common case involving replication.

Sharing is also appropriate when we view multiple interface inheritance as a means of breaking up a large interface
specification into smaller interface specifications (superinterfaces) intended for particular categories of clients. In
Figure B.2-3, for instance, we begin with the definition of a single large interface AvionicsDataServiceInterface.
This interface is large because it contains the operations needed by all clients. This, unfortunately, makes it
unwieldy for them all.

No particular type of client, however, may need the full set of operations. Rather clients of type Producer may need
a given subset of the operations, while clients of type Consumer may need a different (but overlapping) subset, and
so on. To simplify each client’s view, we define a separate interface containing only the operations that it needs
(Figure B.2-4). Because operations that appear in more than one of these client specific superinterfaces have the
same source (AvionicsDataServiceInterface), it is clear that they are intended to represent the same operation. (The
operation getDataChannel in the Producer interface is the same as the operation getDataChannel in the Consumer
interface because both are taken from the definition of getDataChannel provided by AvionicsDataServiceInterface.)
As a result, definitions of such operations should always be shared. This view is also consistent with the policies of
Java and C++.

8 Bertrand Meyer, whose wife is French, is a case in point.

3-79

Volume 3 DRAFT

Driver

getAge() : int
getAddress() : String
getViolationCount()
passBirthday()
payFee()

<<Interface>>

FrenchDriver
<<Interface>>

USDriver
<<Interface>>

FrenchUSDriver

getFrenchAddress() : String
getUsAddress() : String
getFrenchViolationCount()
getUsViolationCount()
pay FrenchFee()
pay UsFee()

<<Interface>>

Figure B.2-2 Shared and replicated operations

3-80

Volume 3 DRAFT

AvionicsDataServiceInterface

ini t()
addDataChannel(name : String) : DataChan...
deleteDataChaqnnel(name : String)
deleteDataChannel(channel : DataChannel)
getDataChannel(name : String) : DataChan...
getAllProducerDataItems(channel : DataCh...
getAllConsumerDataItems(channel : DataCh...
assignBandwidth(channel : DataChannel, m...
advertise(name : String) : DataItem
subscribe(name : String) : DataItem
setProducerRole(channel : DataChannel, pu...
setConsumerRole(channel : DataChannel, p...
setDataValue(i tem : DataItem, validity : boo...
setDefaul tValue(item : DataItem, validity : b...
sendDefaul t(i tem : DataItem)
setRate(item : DataItem, rateInHertz : float)
setPriori ty(i tem : DataItem, priority : int)
getDataIValue(tem : DataItem, out validity ...
isStale(i tem : DataItem) : boolean

Figure B.2-3 A Single large interface to an avionics data source

ProducerInterface

getDataChannel(name : String) : DataChan...
advertise(name : String) : DataItem
setProducerRole(channel : DataChannel, pu...
setDataValue(i tem : DataItem, validi ty : boo...
setDefaul tValue(item : DataItem, val idity : b...
sendDefaul t(i tem : DataItem)

ConsumerInterface

getDataChannel(name : String) : DataChannel
subscribe(name : String) : DataItem
setConsumerRole(channel : DataChannel , pu...
setRate(item : DataItem, rateInHertz : float)
setPriori ty(i tem : DataItem, priority : int)
getDataIValue(tem : DataItem, out val idity : V...
isStale(i tem : DataItem) : boolean

AvionicsDataServiceInterface

ini t()
addDataChannel(name : String) : DataChan...
deleteDataChaqnnel(name : String)
deleteDataChannel(channel : DataChannel)
getDataChannel(name : String) : DataChan...
getAllProducerDataItems(channel : DataCh...
getAllConsumerDataItems(channel : DataCh...
assignBandwidth(channel : DataChannel, m...
advertise(name : String) : DataItem
subscribe(name : String) : DataItem
setProducerRole(channel : DataChannel, pu...
setConsumerRole(channel : DataChannel , p...
setDataValue(i tem : DataItem, validi ty : boo...
setDefaul tValue(item : DataItem, val idity : b...
sendDefaul t(i tem : DataItem)
setRate(item : DataItem, rateInHertz : float)
setPriori ty(i tem : DataItem, priority : int)
getDataIValue(tem : DataItem, out val idity ...
isStale(i tem : DataItem) : boolean

AdminInterface

ini t()
addDataChannel(name : String) : DataChann...
deleteDataChaqnnel(name : String)
deleteDataChannel(channel : DataChannel)
getDataChannel(name : String) : DataChannel
getAllProducerDataItems(channel : DataChan...
getAllConsumerDataItems(channel : DataCha...
assignBandwidth(channel : DataChannel, min...

Figure B.2-4 Separate interfaces for different types of clients

3-81

Volume 3 DRAFT

B.2.1.2 Case 2: Redefinition along separate paths
The ability to specialize the definition of an operation in a subinterface is fundamental to object-oriented
development. The same operation, however, may be specialized (redefined) in different ways along different paths
in the classification hierarchy. The question then arises as to what the result should be when we inherit more than
one definition/redefinition of the same operation in a given subinterface.

The answer hinges on whether sharing or replication is intended, and (if sharing is intended) whether the
specializations are compatible.

A simple way to guarantee this result is to require the user to define a version of the operation in the subinterface
that obeys the Simple overriding rule: with respect to each of its parent interfaces. This leads us to the result in
Figure B.2-5.

A

f() : A

<<Interface>>

B

f() : B

<<Interface>>
C

<<Interface>>

D
<<Interface>>

Figure B.2-5 Redefinition along separate paths, based on [18, p. 551]

In general, the combined operation has a precondition that represents an or’ing of the preconditions of all inherited
definitions of the operation, and a postcondition that represents an and’ing of all inherited postconditions. Type
constraints on in parameters are considered part of the precondition. Type constraints on out parameters and the
result, and any restrictions on errors reported/exceptions thrown are considered part of the postcondition.

These guidelines are simply intended to help the user write the correct signature for the combined operation. The
target language compiler should catch all errors associated with the result of doing so, including errors resulting
from attempts to combine conflicting definitions.

Adopting the simple view of interface inheritance as a factoring of a large interface into smaller ones targeted to
specific categories of clients, we could instead forbid refinement of operations along separate paths. This is certainly
consistent with the idea that all refinements of an operation be compatible (in this case they would have to be
identical). However, forbidding refinement of operations may be less flexible than we would like in situations such
as that given above, and would certainly be more restrictive than is required to type safe9.

9 With respect to the languages of primary interest, the ways in which operations may be refined are limited (C++ permits the
return type to be made more specific, Java permits the elimination of exceptions from the exception list). The ability to make the
return type more specific, however, has been shown to have a large effect upon the number of run time casts required [22].

3-82

Volume 3 DRAFT

A

f() : A

<<Interface>>

B

f() : B

<<Interface>>
C

<<Interface>>

D

f() : B

<<Interface>>

Figure B.2-6 Explicit definition of combined operation in subinterface

B.2.1.3 Case 3: Independently defined operations with same signature
A different situation arises when two parent interfaces independently define operations with the same signature. This
is not repeated inheritance since we are not talking about inheriting the same operation via more than one path, but
different operations, independently defined, that have the same signature. The key question is whether the matching
of the signatures is intentional or accidental.

B

sameSignature(i : int) : f loat

<<Interface>>
C

sameSignature(i : int) : f loat

<<Interface>>

D
<<Interface>>

Figure B.2-7 Independently defined operations with same signature, based on [18, p. 550]

If the operations were completely and formally specified, we could compare preconditions and postconditions to see
if the semantics are the same. If they are, then a single operation that does what they both promise to do should be
sufficient in all cases.

3-83

Volume 3 DRAFT

Alternately we could adopt the view that interface inheritance represents only a factoring of a large interface into
smaller ones targeted to specific categories of clients. If we use interface inheritance in only this way, then it is clear
that we intend the separately inherited operations to be the same (i.e. sharing is always the right answer). This view
is also consistent with the policies of Java and C++.

B.2.2 Extended guidelines

B.2.2.1 Extension of the Multiple Interface Inheritance Guidelines
The following sections extend the guidelines for Multiple Interface Inheritance to include language specific
guidelines for Java and C++. In general, it is only necessary to enforce (e.g., by means of design and code
inspections) those guidelines that the language does not enforce itself.

B.2.2.1.1 Java guidelines
In Java, a UML interface is represented by a Java interface defining only abstract methods and compile time
constants. Constants whose value is computed at run-time should not be permitted, even when this value is
computed once and never again changed.

The Java language enforces the Repeated interface inheritance rule:. Where operations should be replicated rather
than shared, they must be given distinct names.

Java implicitly combines redefined methods inherited along different paths, enforcing the subtyping guidelines with
respect to method signatures and the use of checked exceptions. It also permits the explicit combination of redefined
methods in the sub-interface as recommended by the Interface redefinition rule:. Code reviews must be used to
enforce this.

When more than one super-interface independently defines a method with the same signature, Java considers them
to represent the same method. Code reviews must be used to ensure this is the real intent, i.e. that the matching of
signatures is not simply accidental. As suggested by the guidelines for Multiple Interface Inheritance, a comment
annotation should be used to document this intent, ensuring it is properly maintained.

B.2.2.1.2 C++ guidelines
In C++, a UML interface is represented by an abstract class defining only pure virtual member functions and
compile time constants. Constants whose value is computed at run-time should not be permitted, even when this
value is computed once and never again changed.

In accordance with the Repeated interface inheritance rule:, all base classes of a C++ interface class must be virtual
base classes. Where operations should be replicated rather than shared, they must be given distinct names.

C++ implicitly combines redefined methods inherited along different paths, enforcing the subtyping guidelines with
respect to method signatures. It also permits the explicit combination of redefined methods in the sub-interface as
recommended by the Independent interface definition rule:. Code reviews must be used to enforce this.

When more than one super-interface independently defines a method with the same signature, C++ considers them
to represent the same method. Code reviews must be used to ensure this is the real intent, i.e. that the matching of
signatures is not simply accidental. As suggested by the guidelines for Multiple Interface Inheritance, a comment
annotation should be used to document this intent, ensuring it is properly maintained.

B.2.2.2 Extension of the Multiple Implementation Inheritance Guidelines
The following section extends the guidelines for Multiple Implementation Inheritance to include language specific
guidelines for C++. In general, it is only necessary to enforce (e.g., by means of design and code inspections) those
guidelines that the language does not enforce itself.

3-84

Volume 3 DRAFT

B.2.2.2.1 C++ guidelines
In accordance with the Repeated implementation inheritance rule:, virtual inheritance should be used by default.
Performance considerations should be taken into account only in response to a demonstrated need, and in
accordance with the 80-20 rule (which suggests that some 20% of the code is executed 80% of the time).

Renaming [22, pp. 273..275] should always be used to distinguish inherited methods that are intended to be different
in the subclass. Otherwise, an overriding method should be defined in the subclass that either selects between the
competing implementations or otherwise combines them10.

The overridden methods must be compatible with one another (in terms of their preconditions and postconditions)
for their overriding by a single overriding subclass method to be valid. This is true both when the competing
implementations have a common definition in a superclass (in accordance with the Implementation redefinition
rule:) or when they do not (in accordance with the Independent implementation definition rule:).

10 This explicit form of selection is preferred even though C++ provides for implicit selection in some cases in accordance with its
own dominance rule [22, p. 263].

3-85

Volume 3 DRAFT

B.3 Dead and Deactivated Code, and Reuse
B.3.1 Deactivated Code Examples
Figure B.3-1 presents a class (C_x) being used by a client (our system). In this diagram, the methods (M_x) are
annotated with the attributes (A_x) and methods they access in italics, as is the client. From the point of view of the
client, class (C_3), methods (M_3, M_4, M_6) and attributes (A_2, A_4) appear to be dead code (i.e., not used by
this system).

Client

M_1,
M_2,
M_5

C_1

A_1
A_2

M_1() -- A_1
M_2() -- A_1
M_3() -- A_2
M_4() -- A_2

C_2

A_3

M_5() -- A_3, M_1, M_2

C_3

A_4

M_6() -- A_4, M_3, M_4

Figure B.3-1 Deactivated Code

3-86

Volume 3 DRAFT

B.3.2 Hierarchy Changes and Method Overriding
For an example of a subtle effect in object-oriented (OO) software, consider the classes, shown in Figure B.3-2,
displayed in both a normal and flattened hierarchy. Here, class C_1, which contains methods M_1() and M_2().
M_1() calls M_2(). Now consider a sub-class, C_2 that inherits C_1, but overrides M_2(). M_1() in class C_2 is
effectively also overridden as it makes a call to a different M_2() than the M_1() in C_1. There are other situations
where changes in the class hierarchy can be subtle and difficult to discover.

Figure B.3-2 Method Overriding

3-87

	Introduction
	Purpose
	Organization

	Mapping of Volume 2 Issues to Volume 3 Guidelines
	Key Concerns/Issues Addressed by the Guidelines

	Single Inheritance and Dynamic Dispatch
	Purpose
	Background
	Overall Approach
	Inheritance with Overriding
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Method Extension
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Subtyping
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Formal Subtyping
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Unit Level Testing of Substitutability
	Motivation
	Applicability
	Guidelines
	Related guidelines

	System Level Testing of Substitutability Using Assertions
	Motivation
	Applicability
	Guidelines
	Related guidelines

	System Level Testing of Substitutability Using Specialized T
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Class Coupling
	Motivation
	Applicability
	Guidelines

	Deep Hierarchy
	Motivation
	Applicability
	Guidelines
	Related Guidelines

	Multiple Inheritance
	Purpose
	Background
	Overall approach
	Multiple Interface Inheritance
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Multiple Implementation Inheritance
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Mixed Multiple Inheritance
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Combination of Distinct Abstractions
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Top Heavy Hierarchy
	Motivation
	Applicability
	Guidelines
	Related guidelines

	Templates
	Purpose
	Background
	Source Code Review
	Motivation
	Related DO-178B Sections and Objectives
	Guidelines

	Requirements-based Test Development, Review, and Coverage
	Motivation
	Related DO-178B Sections and Objectives
	Guidelines

	Structural Coverage for Templates
	Nested Templates
	Related DO-178B Sections and Objectives
	Guidelines

	Templates and Object Code Traceability
	Related DO-178B Sections and Objectives
	Guidelines

	Data and Control Coupling Analysis
	Related DO-178B Sections and Objectives
	Guidelines

	Inlining
	Purpose
	Background
	Inlining and Structural Coverage
	Related DO-178B Sections and Objectives
	Guidelines

	Source Code Reviewof Inlined Code
	Related DO-178B Sections and Objectives
	Guidelines

	Type Conversion
	Purpose
	Background
	Overall approach
	Source Code Review, Checklist, and Coding Standards
	Related DO-178B Sections and Objectives
	Guidelines

	Loss of Precision in Type Conversions
	Related DO-178B Sections and Objectives
	Guidelines

	Type Conversions of References and Pointers
	Related DO-178B Sections and Objectives
	Guidelines

	Language specific guidelines

	Overloading and Method Resolution
	Purpose
	Background
	Code Review Method
	Related DO-178B Sections and Objectives
	Guidelines

	Implicit Conversion
	Related DO-178B Sections and Objectives
	Guidelines

	Dead and Deactivated Code, and Reuse
	Purpose
	Background
	Reuse of Software Components
	Related DO-178B Sections and Objectives
	Guidelines

	Requirements Traceability
	Related DO-178B Sections and Objectives
	Guidelines

	Certification Credit for Reused but Modified Class Hierarchy
	Related DO-178B Sections and Objectives
	Guidelines

	Changes in the Status of Deactivated Code Versus Actively Us
	Related DO-178B Sections and Objectives
	Guidelines

	Service History Credit and Deactivated Code
	Related DO-178B Sections and Objectives
	Guidelines

	Object-Oriented Tools
	Purpose
	Background
	Traceability When Using OO Tools
	Configuration Management When Using Visual Modeling Tools
	Related DO-178B Sections and Objectives
	Guidelines

	Visual Modeling Tools Frameworks
	Relevant DO-178B Sections and Objectives
	Guidelines

	Automatic Code Generators
	Applicability
	Related DO-178B Sections and Objectives
	Guidelines

	Structural Coverage Analysis Tools
	Structural Coverage Analysis for Inheritance
	Related DO-178B Sections and Objectives
	Guidelines

	Structural Coverage Analysis for Dynamic Dispatch
	Related DO-178B Sections and Objectives
	Guidelines

	Traceability
	Purpose
	Scope/Background
	Overall approach
	Related DO-178B Sections and Objectives

	Tracing to Functional Requirements
	Guidelines

	Complex Class Hierarchies and Relationships
	Guidelines

	OO Design Notation and Traceability Ambiguity
	Guidelines

	Traceability and Dynamic Binding/Overriding
	Guidelines

	Dead and Deactivated Code
	Guidelines

	Many to Many Mapping of Requirements to Methods
	Guidelines

	Iterative Development
	Guidelines

	Change Management for Reusable Components
	Guidelines

	Structural Coverage
	Purpose
	Background
	Overall approach
	Structural Coverage of Inheritance
	Guidelines

	Polymorphism with Dynamic Dispatch
	Guidelines

	Data Coupling and Control Coupling
	Guidelines

	References
	Index of Terms
	Is it necessary to use unit level testing to verify subtypin
	Is it necessary to use UML in order to follow the guidelines
	Is it necessary to use special OO coverage tools to measure
	What role should static analysis play in the verification of
	How do the guidelines map to the DO-178B software levels?

